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154 P. ROESCH

dans Imp(xo), les pièces critiques situées sur les colonnes 0,— 1 de

T{x) ont une profondeur bornée par un entier /. Par suite, pour tout i > /,
l'application fn induit un homéomorphisme conforme de Pi+n(x) sur Pi(xq),
donc un homéomorphisme de Imp(x) sur Imp(xo).

On suppose à présent que l'orbite de x évite Imp(xo), c'est-à-dire

qu'aucune colonne de T(x) n'est entièrement critique. On va montrer que, si

T(x) est récurrent, il est non persistant. Il suffit pour cela de construire une
suite ni sur laquelle r est bornée.

Dans le tableau T(xo), entre les colonnes 0 et k, les positions critiques ont

une profondeur majorée par /. Dans T(x), on regarde la colonne de plus petit
indice j où l'on trouve des positions critiques à une profondeur strictement

supérieure à / et on note p la profondeur de la dernière position critique sur

cette colonne. L'anneau Ap(/7(x)) est donc semi-critique. La propriété T3)
assure alors que la diagonale issue de la position (p + y -f 1,0) dans T(x) ne

contient aucune pièce critique à une profondeur strictement supérieure à l + 1.

Ainsi, r(p + j + 1) < I + 1 et on pose n\ p + j + 1. On continue en

considérant la colonne de plus petit indice qui contient des positions critiques
de profondeur strictement supérieure à p. On construit ainsi une suite nt sur

laquelle r reste bornée par / + 1.

§2 La pratique

2.1 Un théorème de connexité locale
On s'intéresse dans la suite aux polynômes de degré d+ 1, d > 2, dont

l'un des points fixes dans C est un point critique de multiplicité d — 1. Un tel

polynôme est conjugué, par une transformation affine de C, à un polynôme
de la forme

(*) fi?d) — ö (yX ^(v — x G C

où a désigne le point fixe critique de multiplicité d — 1. Le point —a est

alors l'unique autre point critique et sera appelé (par contraste) point critique
libre.

Le point a est un point fixe super-attractif. Son bassin d'attraction est

l'ouvert

B(a) \x e C | fn(x) * a\
l n—*oo J
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et son bassin immédiat, noté B(a), est la composante connexe de B(a) qui

contient a. Le but de cette partie est de démontrer le théorème suivant:

THÉORÈME 2.1. Le bord du bassin immédiat B(a) est localement connexe.

En fait, c'est une courbe de Jordan.

Remarque 2.2. Le cas où d 2 a été considéré par D. Faught dans sa

thèse [Fa].

La démonstration du théorème, qu'on expose dans la suite, distingue deux

cas.

Si le point critique libre —a est dans B(a) ou dans le bassin de l'infini

B(oo) ix G C | fn(x) \ oc jl n —f oo

le polynôme / est hyperbolique. La preuve s'appuie alors sur des arguments
très classiques qu'on explique brièvement dans la partie 2.3.

Dans la suite, on considère donc un polynôme / de la forme (*) pour
lequel —a n'est ni dans B(a), ni dans B(oo). La démonstration se déroule

en trois étapes. On donne d'abord une première description de la dynamique
du polynôme / fondée sur des résultats classiques [Ml]. On exploite ensuite

cette description pour trouver un graphe admissible auquel on puisse appliquer
le théorème 1.10. Si le bout critique n'est pas périodique, chaque impression
est réduite à un point et il suffit alors de voir que l'adhérence de toute pièce a

une intersection connexe avec le bord de B(a) pour établir la connexité locale.
Sinon, il reste une étape pour montrer que l'impression du point critique libre
rencontre dB(a) en un seul point.

2.2 Étude rapide de la dynamique

On observe tout d'abord que, comme f~l(oc) {oo}, le bassin d'attraction
B(oo) est connexe. Ensuite, le théorème de Böttcher [B] donne le résultat
suivant (voir [Ml, 17.3]):

PROPOSITION 2.3. Si —a est en dehors de B(a) (resp. de B(oo)), il
existe une représentation conforme fa : D — B(a) (resp. <f: D —>> B(oo)) qui
conjugue f à t zd (resp. à z •—» zcl+l) et est unique à composition près
dans D avec une rotation d'angle 2kir/(d — 1) (resp. 2kir/d).
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De telles représentations, lorsqu'elles existent, induisent des coordonnées

polaires très utiles sur B(a) et B(oo). On appelle ainsi:

• rayon d'angle 0 issu de a l'ensemble

Ra{9){ <paire2ilT9).[0,1[} ;

• rayon externe d'angle 6 l'ensemble

R(6)={00-e20), /• |(). Iii ;

• äquipotentielle de niveau v autour de a la courbe

Ea(v){Mre2i7r96e R/Z} ;

• äquipotentielle externe de niveau v la courbe

E(v){<t>(re2iv6)7 6 e R/Z}

Les rayons sont des arcs sur lesquels la dynamique agit simplement :

f(Ra{9)) Ra(dO) et f{R(0)) R((d + 1)9). De plus, les rayons d'angles
rationnels forment toujours des chemins d'accès à l'ensemble de Julia J(f) :

THÉORÈME 2.4 (Douady, Hubbard, Sullivan, Yoccoz).

a) Pour tout 6 G Q/Z, les rayons Ra(9) et R(0) aboutissent chacun en un

point de l'ensemble de Julia, c'est-à-dire que les arcs r G [0, 1 [i—> fa(re2l7v6)

et r G [0, i\j—> (j)(re2l7r0) ont chacun une limite dans J(f lorsque r tend

vers 1. De plus, chacune de ces limites (ou points d'aboutissement) est un

point pré-périodique répulsif ou parabolique.

b) Tout point périodique répulsif ou parabolique de J(f) est le point
d'aboutissement d'au moins un rayon externe qui est périodique.

On rappelle ici qu'un point p-périodique x de f est parabolique si (fp)'(x)
est une racine de l'unité.

Esquisse de preuve. Pour une preuve complète, voir [Ml, 18.1 et 18.2].

a) On traite le cas du rayon issu de a (l'autre est analogue). Comme 9

est rationnel, Ra(9) est pré-périodique par / et, quitte à changer 9 en l'un de

ses multiples, on peut supposer que Ra(9) est fixe par un itéré fk. On choisit

un point yo G Ra(9) et on regarde la suite yi,...,yn,... de ses préimages
Successives par fk sur Ra(0). La distance hyperbolique dist/,(y,Mjy+i), dans

B(a) \ {a}, est égale à dist/2(yo,3d). Comme la suite yn s'accumule sur

dB(a), la distance euclidienne disL(yn,y/î+i) tend vers 0. De plus, comme

fk(yn+i) — yn, les valeurs d'adhérence de la suite yn sont des points fixes
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par fk et sont donc en nombre fini. Par ailleurs, toute suite y- G Ra(0) est à

distance hyperbolique bornée d'une suite extraite yn. et ses valeurs d'adhérence

sont donc aussi des points fixes de fk. Comme l'accumulation du rayon est

connexe, elle est réduite à un point.

b) La preuve est plus difficile et on n'en donne qu'une idée très succincte

pour un point /:-périodique répulsif x. D'après un théorème classique de

G. Kœnigs, x possède un voisinage U sur lequel / est analytiquement
conjuguée à l'application z » Az où À. *= (fk)'(x)- On voit facilement que
chaque composante connexe V de U \ K(f) est simplement connexe et le

point délicat est de montrer qu'elle est périodique par fk, i.e. que fkl(V) D V

pour un certain entier i. On vérifie ensuite que l'anneau V/fkl obtenu en

quotientant V par la relation d'équivalence x ~ fkl(x), avec sa métrique
hyperbolique, a une géodésique fermée et celle-ci se relève alors en le rayon
externe cherché.

Dans le bassin B(a), on a en outre le résultat suivant qui, compte tenu du
théorème de Carathéodory [C], montre que le bord dB (à) est une courbe de

Jordan dès qu'il est localement connexe:

LEMME 2.5. Si deux rayons issus de a (d'angles rationnels ou non)
aboutissent en un même point de dB(a), ils sont égaux.

Preuve. Sinon, les deux rayons forment, avec leur point d'aboutissement x,
une courbe de Jordan qui borde un ouvert connexe borné U. Comme dU est
inclus dans B(a) qui est compact et invariant par /, le principe du maximum
assure que la famille f\ n > 0, est bornée sur U et donc normale. Pour
obtenir une contradiction, il suffit alors de montrer que U rencontre J(f).
Or, si ce n'est pas le cas, x est le seul point sur lequel peuvent s'accumuler
les rayons Ra(6) contenus dans U et, par suite, tous ces rayons convergent
vers x. Les angles de ces rayons forment un intervalle de R/Z et, comme la
multiplication par deux est dilatante, on voit que tout rayon issu de a aboutit
en x, ce qui est absurde.

2.3 Le cas hyperbolique
On suppose ici que -a se trouve soit dans B(a), soit dans B(oo). On note

P(f) l'ensemble post-critique de / — i.e. l'adhérence des orbites positives
de tous les points critiques de / — et on pose U C \ P(f). Comme P(f)
contient au moins a, a et oo, le revetement universel U de U est un disque
— sauf si a 0, auquel cas l'ensemble de Julia est exactement le cercle
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unité puisque f(x) xJ+1 — et on désigne par 7r la projection U U. Par

ailleurs, f~l(U) C U car / envoie dans lui-même.

LEMME 2.6. Aw voisinage de J(f), Vapplication f dilate exponentiellement
la métrique hyperbolique de U.

Preuve. On va construire une application holomorphe g de U dans
7ï--1 (f~l(U)) C U qui fait commuter le diagramme

ùtt-1(/-'([/))

4 h
U < f-\U)f

et a un point fixe attractif. Le lemme découle alors du fait que, d'après le
lemme de Schwarz, g contracte exponentiellement la métrique hyperbolique
du disque U sur tout compact de U.

Pour trouver g, on note d'abord que J(f) contient au moins un point fixe

répulsif, par exemple le point d'aboutissement yo du rayon Ra(0) (celui-ci n'est

pas parabolique car il n'est pas dans P(f)). D'autre part, —> U est

une application holomorphe propre sans points critiques, donc un revêtement.

On obtient g en relevant tt: U —» U à ce revêtement puis à 7r-1(/-1(£/)) en

une application fixant une préimage de yo dans U.

On suppose maintenant que —a est dans B{00). Si (f>a: D —>• B(a) est

une représentation conforme fournie par la proposition 2.3, on regarde les

applications

In: R/Z » C, t^ Jn0fl((l/2)Ve^')

LEMME 2.7. La suite 7n converge uniformément vers une application
surjective de R/Z dans dB(a). Par suite, dB(a) est localement connexe.

Preuve. Pour no assez grand, l'image de 7no est dans le voisinage de

J(f) où / dilate la métrique hyperbolique de U. On note alors À > 1 la

constante de dilatation de la métrique et on pose

C sup{dist£y(7„0(0,7no+i(0), t e R/Z}

Le fait que / envoie chaque rayon dans B(a) sur un autre rayon assure que,

pour tout n> no et tout t G R/Z,
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disty (7,, (r): 7n+l W) < CX"° "

ce qui entraîne la convergence uniforme voulue.

Si maintenant —a est dans B(a), alors f~l{B(a)) B(a). Il en découle

l'égalité dB(a) J(f) dB{00). En effet, tout point x qui n'est pas dans

B(d) a un voisinage V disjoint de B(a). Par suite, toutes ses images itérées

f"(V) évitent B(a), ce qui montre que la famille {/"} est normale sur V,
donc que x n'appartient pas à J(f). On applique alors à une représentation de

Böttcher <fi: D —» B(00) le même raisonnement que plus haut pour montrer

que dB (a) est une image continue du cercle.

Il reste à voir que dB (à) est bien une courbe de Jordan. On distingue
deux cas :

Si —a est dans B(oo), la représentation conforme <fia : D —>• B(a) est bien

définie et le résultat découle alors du lemme 2.5.

Si —a est dans B{a), en conjuguant / par une transformation de Mœbius

0 qui échange a et 00, on obtient un polynôme g qui possède un point fixe

super-attractif O(oo) et dont le bassin immédiat (<D(B(00))) ne contient pas
d'autres points critiques. Dans ce cas on a bien une représentation conforme
du bassin immédiat à laquelle on peut alors appliquer le lemme 2.5.

2.4 Construction de graphes admissibles

On suppose désormais que le point critique libre —a n'est ni dans B(à)
ni dans £(00) et on regarde le polynôme / comme une application à allure
rationnelle de X' dans X où

X=C\(4((l/2)D)u<ya/2)D)) et

Figure 1

Le graphe T((9) avec, en gris, le bassin immédiat B(a) privé de 1/2)D)
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Pour construire un graphe admissible, on observe d'abord que, pour tout
I > 1, l'angle 0 \/(dl — I) est, modulo 1, /-périodique par multiplication
par d. D'après le théorème 2.4-a), le rayon Ra(6) converge donc vers un point
périodique x répulsif ou parabolique. En prenant / assez grand, on s'assure

d'une part que l'orbite positive du point critique —a est disjointe de celle
de v et d'autre part que x est répulsif (en effet, / possède au plus une orbite

périodique parabolique car tout orbite de ce type attire un point critique). Le
théorème 2.4-b) fournit alors un rayon externe périodique R(rj) qui aboutit

en v. Avec ces rayons, on forme*) le graphe admissible suivant:

r(0) dx U f X n ((J Raid19) UR((d+ iy'77)) J
^ ;>o '

Sur le cercle identifié à [0, l]/(0 ~ 1), les angles dl6, 0 < i < / — 1,

sont rangés en ordre croissant. On va maintenant vérifier que le graphe T(0)
satisfait les hypothèses du théorème 1.10.

On distingue deux types de pièces de profondeur 0 découpées par T(0),
selon que leur bord est formé, en dehors de dX, de quatre rayons — deux dans

B(a), deux dans B(00) — ou simplement de deux rayons externes. Comme

on s'intéresse surtout aux pièces du premier type, on appellera losange tout
ouvert de C dont la frontière est l'adhérence d'exactement quatre rayons
d'angles rationnels dont deux sont dans B(a) et les deux autres dans B(00).
Les propriétés suivantes sont immédiates:

1) tout losange rencontre B(a) \ {a} suivant une partie stricte;

2) si C et V sont deux losanges tels que U n V n B(a) {a}, alors

u n y {a, 00} ;

3) l'union de deux losanges qui s'intersectent est soit un losange, soit

C \ {a, 00} ;

4) si U et y sont deux losanges tels que f(dU) dV, f(U) rencontre

y H B(a) et si U intersecte B(a) dans un secteur angulaire d'ouverture
strictement inférieure à l/d (i.e. si 0\ < 02 sont les arguments des rayons
de dUDB(a) alors 02-0{< l/d) alors U D B(a) C f~l(V).

Pour le point 4), il suffit de voir que U H B(a) ne coupe pas de préimages du

bord de V. Ceci découle du fait que l'ouverture angulaire est trop petite pour
intersecter f~x(dV) D B(a), puisque dU est déjà dans f~l(dV). Par suite, /
envoie U H B(a) dans VDB(a), d'où l'affirmation.

*) Souvent, par abus de langage, on dira qu'un rayon fait partie de l'adhérence ou du bord
d'une pièce si cet ensemble contient au moins deux points du rayon. D'autre part, par extension,
on appellera encore rayon toute préimage itérée d'un rayon de B{a).
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On note Ti(0) le graphe /_1 (r(0)). Les rayons de B(a) qui font partie de

Tj (0) \ T(0) ont pour angles les dl0 + (j/d), 0 < i < l — 1, l < j < d — l, qui

sont tous dans l'intervalle du cercle contenant 0 et délimité par 0 + (1 /d) et

9/d (voir la figure 2). On se donne d'autre part un losange £7(0) qui contient

R0(0) \ {a} et est bordé par Ra{9 + (1 /d)), Ra(9/d) et deux rayons externes

faisant partie de ri(0).

Figure 2

Le cas d 4, 1—3 vu dans D via avec, en pointillés, B(a) D r(0),
en continu, B(a) D {T\(6)\ T(0)) et, en gris, U(6) fl B(o)

LEMME 2.8. Tout point de J(f)n (U(6)\Ti(6)) est bagué par T(6) à la

profondeur 0.

Preuve. L'intersection U(0)P\Xf qui est une union de pièces de

profondeur 1, est relativement compacte dans la pièce de profondeur 0 qui
rencontre Ra(0) et qu'on note Pq (voir la figure 2). En effet, Pç, est la trace

sur X d'un losange P0 bordé dans B(a) par Ra(6) et Ra(6/d+l/d). Comme
1 > 0+ \/d > 0/d-P l/d et 0 < 9/d < 0, l'intersection U(9) H (C\P0) DB(a)
est réduite à a. Par suite, U(9) et C \PQ ne se touchent qu'en a —
propriété 2) des losanges. Ainsi, U(9) C\Xf c Pq.

LEMME 2.9. Soit 6 - 1 /{d1 - 1) et 6' 1 /(/ - 1) avec l' > l + 1 et
l assez grand. Tout point de dB(a) est bagué à une profondeur bornée par
Tun des graphes T(0) ou T(0/)-

Preuve. On remarque tout d'abord que

((U(0) \ n(0)) u (U(6')\r,(0'))) n X' (cm u
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car les graphes et Ti (9f) sont disjoints dans X'. Par suite, il suffit
de montrer qu'il existe un entier n > 0 tel que |J f~l{U(9) U U{9'))

0<i<n
contienne dB(a).

L'ouvert U(9) U U{9') est un losange que l'on note Vo, les rayons de

B(a) inclus dans <9Vo sont d'angles 77 6' + 1 /d, £ 9/d. On note n le

plus petit entier tel que r\/dn < £, on va construire, pour 0 < m < n, un
ouvert Vm ayant les propriétés suivantes :

• Vmn dB(a) est inclus dans (J f~l(V0) ;

0<i<m

• Vm, pour m < n, est un losange qui contient Ra(l/dm) et est bordé
dans B(a) par Ra{j]jdm) et Ra(0'>

• Vn C\{a}.
Il existe un losange V[ contenant Ra(l/d) et bordé dans B(a) par Ra(rj/d),
Ra((/d+ 1 /d), dont tout le bord est inclus dans f~~1 (OVq). Alors, d'après
la propriété 4), V[ H B(a) C /_1(V0). Comme (/d + \/d > 77, les losanges

V[ et Vo s'intersectent et V\ Vo U V[ est un losange ayant les propriétés
demandées. On construit de même un losange V'm pour tout m < n et on

pose vm

Figure 3

Illustration de la démonstration du lemme 2.9

Remarques.

a) Toutes les constructions précédentes et en particulier les lemmes 2.8

et 2.9 restent évidemment valables si on prend des graphes d'angle opposé
i.e. d'angle 1—9 avec 9 toujours de la forme l/(dl — 1).

b) La profondeur à laquelle on parvient à baguer les points de dB (a) est

bornée indépendamment du point considéré, mais croît avec / et l'. Ce fait est
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insignifiant puisque l'on obtient finalement, d'après le lemme 1.12, que tout

point de dB{a) est infiniment bagué par un graphe T(0) avec 0 l/(dl - 1)

et / assez grand.

D'après la remarque b) précédente, il reste à baguer le point critique —a

(qui se trouve dans K(f)) et conclure par le théorème 1.10. On a le lemme

suivant :

Lemme 2.10. Il existe /0 G N et 6 G {±1} dépendant uniquement de

a tels que pour tout l > lo, le point critique libre —a est bagué à la

profondeur 0 ou 1 par T(S6) où 6 est de la forme 1 /{d1 — 1).

On assimile dans cet énoncé —6 et 1 — 6.

Preuve. Pour d > 2, et / assez grand, l'ensemble U(9) contient tous les

rayons Ra(t), t G [1/2,1] et U( 1 —6) tous les rayons Ra(t), t G [0, 1/2]. De

ce fait, U{6) U U{\ — 6) contient B(a) \ {a] ; c'est donc C \ {a} en vertu des

propriétés 1) et 3) des losanges. De plus, comme les graphes sont admissibles

(on prend lo grand dans ce but), —a n'est sur aucun graphe de profondeur 1.

Ceci résout le cas d > 2.

Pour d 2, l'ouvert U{6) U U(l — 6) ne recouvre plus B(a). Néanmoins,

pour tout / > — loge/log d où e est un rationnel petit, U(9) contient tous les

rayons Ra(t), t G [1/2+g, 1] et £7(1 — 0) tous les rayons Ra(t), t G [0,1/2 —g].
On suppose donc désormais que le point critique —a est dans un losange V
bordé par Ra( 1/2 +s), Ra( 1/2-e) et contenant Ra( 1/2). Pour voir que —a

est bagué à la profondeur 1, comme a priori il se peut que V contienne
une partie d'une préimage de B(a), on va montrer que la valeur critique
f{-a) est baguée à la profondeur 0 et plus précisément qu'elle se trouve dans

c\v c u(0) u u{\ - 6).

On suppose donc que f(-a) est dans V, qui est un disque. Comme /
est de degré 3 et que -a est simple, f~l(V) est formé de deux disques et
ceux-ci ne touchent pas f~\ÔV). Or il y a deux losanges Vu V2 évidents
qui ont leur bord inclus dans f~l(dV), contiennent respectivement Ra( 1/4),
Rai3/4) et vérifient

CÔVl Ct i?«(ï±|)Cay2'

Par suite, les deux composantes de f~\V) sont incluses dans Vj U V2 qui
contient donc — aet est disjoint de V.
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En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de dB(a), l'un des graphes T(0), ou T(1 — 0) bague infiniment x et bague le

point critique —a. Le théorème de Yoccoz 1.10 et le lemme 2.11 ci-dessous

assurent alors que dB (à) est localement connexe en x ce qui achève la preuve
du théorème 2.1, sauf dans la cas où le bout de —a est périodique et si x
tombe dans Imp (—a) par itération. C'est ce cas qu'il reste à étudier dans la

partie suivante 2.5.

Pour trouver des voisinages connexes d'un point x de 9B(a), on va extraire
de chaque intersection Pn(x) H dB (a) un voisinage connexe de x dans dB(à)

qui est de la forme f] Q(u,r,rf) avec r, r' G Q/Z où
ue] o,i[

Q(u,r, r') {<t>a(re2,7rt) | r G ]w, 1[, / G ]r, r'[}

LEMME 2.11. Tout point x de dB(a) dont l'impression P Pn(x) est ré-
n> o

duite à x possède un système fondamental de voisinages connexes dans dB(a).

Preuve. Toute pièce de profondeur n rencontre B(a) suivant des secteurs

du type Q(2_1//J', r, r7) car son bord est formé, dans B(a), (de morceaux) de

rayons rationnels et de l'équipotentielle de niveau 2~l/d". Par ailleurs, comme

x appartient à Pn(x)OdB(a), il possède un voisinage dans Pn(x) qui rencontre

B(a). Ce voisinage rencontre alors un secteur Q(2~lfd'\ r, t') C Pn(x) P\ B(a)
où Ra(r), Ra(r') font partie de dPn(x). Ainsi, l'intersection

u„= H ß("' r' T') C
ue] o,i[

est un voisinage de x dans dB(a), compact et connexe (c'est une intersection
décroissante de parties compactes connexes). Comme l'intersection des pièces

Pn{x) se réduit au point x, la suite Un constitue un système fondamental de

voisinages connexes de x dans dB(a).

2.5 Cas d'un bout critique périodique

On considère à présent le graphe F parmi T(6) et T(1 — 0) qui bague

le point critique libre —a (à la profondeur 0 ou 1) et on suppose que
le bout de —a est &-périodique. D'après le théorème de Yoccoz 1.10,

l'application fk : Pm±k(—a) Pm(~û) est à allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est l'impression

Imp (—a) H Pn(—a). Deux cas se présentent alors. Si B(a) n'intersecte
n> 0

pas K, la connexité locale de dB(a) découle encore une fois du théorème de
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Yoccoz 1.10 et du lemme 2.11, car aucun point de dB(a) ne tombe dans K

par itération et toutes les impressions sont donc réduites à des singletons.

Sinon, on montre que dB(a) H K est formé d'au plus un point (lemme 2.13)

qui est un point fixe par fk noté ß. Il en résulte que, si l'orbite d'un point

x G dB(a) passe dans K, la suite des parties Pn(x) Pi dB(a) forme, dans

dB(a), un système fondamental de voisinages de x puisque leur intersection

est réduite à une préimage itérée de dB(a)nK C {0}. Le lemme 2.11 permet

alors de conclure que dB{a) est localement connexe en x. Ce qui achève la

preuve du théorème 2.1.

Dorénavant, on suppose que K n dB{a) ^ 0 et dans la fin de cet article on

montre que dB(a) fi K est formé d'au plus un point. Dans un premier temps,

on trouve un point répulsif ou parabolique dans K n dB(a) :

Lemme 2.12. Il existe dans B(a) un rayon Ra(rj) qui est k-périodique

par f et aboutit en un point ß G K D dB(a) — fixe par fk.

Preuve. On reprend les notations données juste avant le lemme 2.11.

On montre tout d'abord (par récurrence sur n) que, si une pièce Pn de

profondeur n rencontre B(a), l'intersection Pn fi B{a) est formée d'un seul

secteur du type <2(w,t, r'), où l'intervalle ]r, r'[ du cercle a une longueur
strictement inférieure à l/<in+1.

Une pièce Pq de profondeur 0 a clairement cette propriété. D'autre part,
toute pièce Pn+ \ de profondeur n + 1 est contenue dans une pièce P'n de

profondeur n et a pour image par / une (autre) pièce Pn de profondeur n.
Par hypothèse de récurrence, Pn fl B(a) est du type Q(un, r,u rffi, avec

\Tn~Tn\ < 1 /dn+x. L'ouvert Q(un) rn, r'n) a donc d préimages dans B{a), qui
sont de la forme

q(u,t + + ^), 0 < i < d — 1,

où u — ujd et \r' — t\ < l/dn+2. L'intersection Pn+\ n B(a) coïncide alors

avec l'un de ces secteurs ouverts: elle en contient un tout entier car elle
est bordée par des rayons préimages de ceux qui bordent Pn et elle ne peut
en contenir deux car deux tels secteurs diffèrent de \/d alors que la pièce
P!n D P,7+i rencontre B{a) dans un secteur d'ouverture < l/d (hypothèse de

récurrence). On choisit alors r, r' pour que

Pn+1 fl B(a) Q(u1 r, r').
Soit maintenant x un point de K ndB(a). S'il se trouve sur une préimage
Tn du graphe T, c'est immédiatement le point d'aboutissement d'un rayon
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prépériodique de B(a). En prenant son image par un itéré convenable de /,
on obtient un rayon périodique qui converge vers un point ß G KH dB(a) fixe

par fk. Si x n'est sur aucune préimage du graphe, la pièce Pn(x) rencontre

B(a) suivant un secteur de la forme Q(2~l^d'\rn,rß) avec \rn — r/| < \/dn.
Les angles (r„), {r'n) forment des suites adjacentes dont on note 77 la limite
commune. Comme x G K C Pn(—o), nécessairement Pn(x) Pn(—a) et, de

ce fait,
fk Pn+kix)n B(a)) Pn(x) n

pour n assez grand. Par suite, dkr) est dans l'intervalle ]rn,r'n[ C R/Z, de

sorte que dkrj 77. Le rayon d'angle 77 converge alors vers un point ß
(théorème 2.4). Ce point ß est fixe par fk et, comme il se trouve dans toutes

les pièces Pn(—a), il est dans K H dB(a).

LEMME 2.13. Il existe deux rayons externes R{Q, R{Ç')> d'angles Ç,

rationnels, qui aboutissent au point ß et sont tels que la courbe de Jordan

R(0 U R(C) U {ß} sépare K \ {ß} de B(a) \ {ß}.

Preuve. Dans la preuve du lemme 2.12, on a vu que Pn(—a) DB(a) est

de la forme Q(2-1/^, r„, rß). Les rayons Ra(rn), Ra(j'n) convergent vers des

points yn, y'n de dB(a) en lesquels aboutissent aussi des rayons externes

qui font partie de dPn(—a) et qu'on note respectivement /?((«), R(Ç'n). La
suite Çn (resp. ('n) est alors croissante majorée (resp. décroissante minorée) et

converge donc vers un angle limite (resp. ('). De plus, comme fk est un

homéomorphisme local en les points yn, y'n et que fk{Pn^k(—a)) s= Pn(—a)

pour n assez grand,

f{R((n+k))=R(Cn),etf(R(Cn+k)) =R(0-
Il en résulte que (d + l)^Cn+£ Cn (dans R/Z) et, par suite, que Ç est

périodique de période divisant k. Les rayons R(Q, R(C) convergent ainsi

vers des points y, y' qui sont fixes par fk et qui appartiennent à K — car
la partie des rayons R(Ç), R(C) située au-delà du potentiel 2~l/d" se trouve
dans Pn(—a).

D'autre part, le théorème de redressement de A. Douady et J. H. Hubbard

[DH2, théorème 1] montre que fk est conjuguée à un polynôme quadratique

fc(z) z2~hc par un homéomorphisme a d'un voisinage de K sur un voisinage
de l'ensemble de Julia rempli Kc de fc. Les points a(ß), a(y) et a(y') sont

des points fixes de fc en lesquels aboutissent des arcs externes fixes par fc

— à savoir a(Ra(r/)), a{R(Q) et cj(R(C0)• Or un polynôme quadratique

possède au plus deux points fixes parmi lesquels un seul — généralement
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noté ßc — est l'aboutissement d'un arc externe fixe [P, théorème A]. Par

suite, R(Q, R(C) convergent nécessairement vers ß.

Finalement, R(QUR(C) forme une courbe de Jordan qui sépare K\{3} de

B(a) \{ß}. En effet, le losange Vn bordé par Ra{rn), Ra(j'n), R{Q et R(Q
contient la pièce Pn(—à) par construction. Il contient donc K et, par suite,

au moins un point périodique répulsif p (différent de 3 et un rayon externe

qui converge vers p, de sorte que Ç ç', Ainsi, la composante connexe U

de C \ (jR(C) U R(C)) qui contient p contient K \ {3} — car K ne peut

rencontrer la courbe R(Q U R(C) qu'en 3 et ce point ne disconnecte par K

[M, théorème 6.10].
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