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154 P. ROESCH

dans Imp(xp), les pieces critiques situées sur les colonnes 0,...,n — 1 de
T'(x) ont une profondeur bornée par un entier /. Par suite, pour tout i > /[,
I’application f” induit un homéomorphisme conforme de P;i,(x) sur P;(xp),
donc un homéomorphisme de Imp(x) sur Imp(xp).

On suppose a présent que l'orbite de x évite Imp(xp), c’est-a-dire
qu’aucune colonne de 7T(x) n’est enticrement critique. On va montrer que, Ssi
T(x) est récurrent, il est non persistant. Il suffit pour cela de construire une
suite n; sur laquelle 7 est bornée.

Dans le tableau T'(xp), entre les colonnes O et k, les positions critiques ont
une profondeur majorée par [. Dans 7(x), on regarde la colonne de plus petit
indice j ou I'on trouve des positions critiques a une profondeur strictement
supérieure a / et on note p la profondeur de la derniere position critique sur
cette colonne. L’anneau A, (fj(x)) est donc semi-critique. La propriété T3)
assure alors que la diagonale issue de la position (p+j+ 1,0) dans 7T(x) ne
contient aucune piece critique a une profondeur strictement supérieure a [+ 1.
Ainsi, T(p+j+ 1) <1+ 1 et on pose ny = p+j+ 1. On continue en
considérant la colonne de plus petit indice qui contient des positions critiques
de profondeur strictement supérieure a p. On construit ainsi une suite n; sur
laquelle 7 reste bornée par [+ 1. [

82 LA PRATIQUE

2.1 UN THEOREME DE CONNEXITE LOCALE

On s’intéresse dans la suite aux polyndémes de degré d + 1, d > 2, dont
I’un des points fixes dans C est un point critique de multiplicité d— 1. Un tel
polynéme est conjugué, par une transformation affine de C, a un polynéme
de la forme

d—+2
d

ou a désigne le point fixe critique de multiplicité d — 1. Le point —a est
alors I’unique autre point critique et sera appelé (par contraste) point critique
libre.

Le point a est un point fixe super-attractif. Son bassin d’attraction est

*) fo=a+(x+—"a)c-a, xeC,

I’ouvert
B(a) = {x ceC| f'"(x) —— a}

n— oo

d
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et son bassin immédiat, noté B(a), est la composante connexe de B(a) qui
contient a. Le but de cette partie est de démontrer le théoréme suivant:

THEOREME 2.1. Le bord du bassin immédiat B(a) est localement connexe.
En fait, c’est une courbe de Jordan.

REMARQUE 2.2. Le cas ol d =2 a été considéré par D. Faught dans sa
these [Fa].

La démonstration du théoréme, qu’on expose dans la suite, distingue deux
cas.

Si le point critique libre —a est dans B(a) ou dans le bassin de I’infini

B(co) = {x ceC| f'(x) — oo} |
le polyndme f est hyperbolique. La preuve s’appuie alors sur des arguments
tres classiques qu’on explique brievement dans la partie 2.3.

Dans la suite, on considere donc un polynéome f de la forme (x) pour
lequel —a n’est ni dans B(a), ni dans B(co). La démonstration se déroule
en trois étapes. On donne d’abord une premiere description de la dynamique
du polyndme f fondée sur des résultats classiques [M1]. On exploite ensuite
cette description pour trouver un graphe admissible auquel on puisse appliquer
le théoreme 1.10. Si le bout critique n’est pas périodique, chaque impression
est réduite a un point et il suffit alors de voir que 1’adhérence de toute piece a
une intersection connexe avec le bord de B(a) pour établir la connexité locale.
Sinon, il reste une étape pour montrer que ’impression du point critique libre
rencontre 0B(a) en un seul point.

2.2 ETUDE RAPIDE DE LA DYNAMIQUE

On observe tout d’abord que, comme f~!(c0) = {oo}, le bassin d’attraction
B(oo) est connexe. Ensuite, le théoreme de Bottcher [B] donne le résultat
suivant (voir [M1, 17.3]):

PROPOSITION 2.3. Si —a est en dehors de B(a) (resp. de B(c0)), il
existe une représentation conforme ¢,: D — B(a) (resp. ¢: D — B(co)) qui
conjugue f a z v z% (resp. a z — z%F') et est unique a composition pres
dans D avec une rotation d’angle 2km/(d — 1) (resp. 2kn/d).
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De telles représentations, lorsqu’elles existent, induisent des coordonnées
polaires treés utiles sur B(a) et B(oco). On appelle ainsi:

e rayon d’angle 0 issu de a 1’ensemble

R(0) = {¢a(r ™), r € (0,11}
e rayon externe d’angle 6 1’ensemble

R(O) = {¢(re*™), r e [0,1[};
e équipotentielle de niveau v autour de a la courbe

E,() = {¢u(re®™), 0 e R/Z};
o ¢équipotentielle externe de niveau v la courbe

Ew) = {¢(re*™), 0 e R/Z} .

Les rayons sont des arcs sur lesquels la dynamique agit simplement:
f(Ra(Q)) = R,(dO) et f(R(Q)) = R((a’+ 1)9). De plus, les rayons d’angles
rationnels forment toujours des chemins d’acces a I’ensemble de Julia J(f) :

THEOREME 2.4 (Douady, Hubbard, Sullivan, Yoccoz).

a) Pour tout 0 € Q/Z, les rayons R,(0) et R(0) aboutissent chacun en un
point de U'ensemble de Julia, c’est-a-dire que les arcs r € [0, 1[— ¢, (r *™?)
et r e [0,1[— <b(rezi”9) ont chacun une limite dans J(f) lorsque r tend
vers 1. De plus, chacune de ces limites (ou points d’aboutissement) est un
point pré-périodique répulsif ou parabolique.

b) Tout point périodique répulsif ou parabolique de J(f) est le point
d’aboutissement d’au moins un rayon externe qui est périodique.

On rappelle ici qu'un point p-périodique x de f est parabolique si (") (x)
est une racine de 1’unité.

Esquisse de preuve. Pour une preuve complete, voir [M1, 18.1 et 18.2].

a) On traite le cas du rayon issu de a (Iautre est analogue). Comme 0
est rationnel, R,(f) est pré-périodique par f et, quitte a changer 6 en 'un de
ses multiples, on peut supposer que R,(f) est fixe par un itéré f*. On choisit
un point yo € R,(#) et on regarde la suite yi,...,y,,... de ses préimages
successives par fk sur R,(f). La distance hyperbolique dist,(y,, y,+1), dans
B(a) \ {a}, est égale a dist;(yo,y;). Comme la suite y, s’accumule sur
OB(a), la distance euclidienne dist.(y,,y,+1) tend vers 0. De plus, comme
F*Yps1) = yu, les valeurs d’adhérence de la suite y, sont des points fixes

h*z o
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par f* et sont donc en nombre fini. Par ailleurs, toute suite y; € R,(0) est a
distance hyperbolique bornée d’une suite extraite y,, et ses valeurs d’adhérence
sont donc aussi des points fixes de f¥. Comme I’accumulation du rayon est
connexe, elle est réduite a un point.

b) La preuve est plus difficile et on n’en donne qu’une idée trés succincte
pour un point k-périodique répulsif x. D’apres un théoréme classique de
G. Keenigs, x posseéde un voisinage U sur lequel f est analytiquement
conjuguée a ’application z — Az o A = (f¥)(x). On voit facilement que
chaque composante connexe V de U \ K(f) est simplement connexe et le
point délicat est de montrer qu’elle est périodique par f*, i.e. que (V) DV
pour un certain entier i. On vérifie ensuite que I’anneau V/f¥ obtenu en
quotientant V par la relation d’équivalence x ~ f¥(x), avec sa métrique
hyperbolique, a une géodésique fermée et celle-ci se releve alors en le rayon
externe cherché. [

Dans le bassin B(a), on a en outre le résultat suivant qui, compte tenu du
théoreme de Carathéodory [C], montre que le bord dB(a) est une courbe de
Jordan des qu’il est localement connexe :

LEMME 2.5. Si deux rayons issus de a (d’angles rationnels ou non)
aboutissent en un méme point de 0B(a), ils sont égaux.

Preuve. Sinon, les deux rayons forment, avec leur point d’aboutissement x,
une courbe de Jordan qui borde un ouvert connexe borné U. Comme QU est
inclus dans B(a) qui est compact et invariant par f, le principe du maximum
assure que la famille /", n > 0, est bornée sur U et donc normale. Pour
obtenir une contradiction, il suffit alors de montrer que U rencontre J(f).
Or, si ce n’est pas le cas, x est le seul point sur lequel peuvent s’accumuler
les rayons R,(0) contenus dans U et, par suite, tous ces rayons convergent
vers x. Les angles de ces rayons forment un intervalle de R/Z et, comme la
multiplication par deux est dilatante, on voit que tout rayon issu de a aboutit
en x, ce qui est absurde. [

2.3 LE CAS HYPERBOLIQUE

On suppose ici que —a se trouve soit dans B(a), soit dans B(co). On note
P(f) I’ensemble post-critique de f — i.e. l’adhérenci des orbites positives
de tous les points critiques de f — et on pose U = C \ P(f). Comme P(f)
contient au moins —a, a et oo, le revétement universel U de U est un disque
— sauf si a = 0, auquel cas I’ensemble de Julia est exactement le cercle
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unité puisque f(x) = x*! — et on désigne par 7 la projection U— U. Par
ailleurs, f~'(U) C U car f envoie P(f) dans lui-méme.

LEMME 2.6. Au voisinage de J(f), l’application f dilate exponentiellement
la métrique hyperbolique de U.

~

Preuve. On va construire une application holomorphe ¢g de U dans
7~ (f~1(U)) C U qui fait commuter le diagramme

U —2— == (f~1(U))

ﬂ y

Uu——- iU
I

et a un point fixe attractif. Le lemme découle alors du fait que, d’apres le
lemme de Schwarz, g contracte exponentiellement la métrique hyperbolique
du disque U sur tout compact de U.

Pour trouver g, on note d’abord que J(f) contient au moins un point fixe
répulsif, par exemple le point d’aboutissement y, du rayon R,(0) (celui-ci n’est
pas parabolique car il n’est pas dans P(f)). D autre part, f: f~(U) — U est
une application holomorphe propre sans points critiques, donc un revétement.
On obtient g en relevant 7: U — U & ce revétement puis a 7~ (f~'(U)) en
une application fixant une préimage de yy dans u. O

On suppose maintenant que —a est dans B(co). Si ¢,: D — B(a) est
une représentation conforme fournie par la proposition 2.3, on regarde les
applications

Wi RIZ— C, 1 3(t) = ¢a((1/2)V ™) .
LEMME 2.7. La suite v, converge uniformément vers une application
surjective de R/Z dans OB(a). Par suite, OB(a) est localement connexe.

Preuve. Pour ng assez grand, I’image de <, est dans le voisinage de
J(f) ou f dilate la métrique hyperbolique de U. On note alors A > 1 la
constante de dilatation de la métrique et on pose

C = sup{disty (Ya, (), Yuo+1()), t € R/Z} .

Le fait que f envoie chaque rayon dans B(a) sur un autre rayon assure que,
pour tout n > ng et tout r € R/Z,
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disty (a(®), Yas1() < CA°7",

ce qui entraine la convergence uniforme voulue.  []

Si maintenant —a est dans B(a), alors f~'(B(a)) = B(a). Il en découle
’égalité OB(a) = J(f) = OB(c0). En effet, tout point x qui n’est pas dans
B(a) a un voisinage V disjoint de B(a). Par suite, toutes ses images it€rées
(V) évitent B(a), ce qui montre que la famille {f"} est normale sur V,
donc que x n’appartient pas a J(f). On applique alors a une représentation de
Bottcher ¢: D — B(co) le méme raisonnement que plus haut pour montrer
que OB(a) est une image continue du cercle.

Il reste a voir que OB(a) est bien une courbe de Jordan. On distingue
deux cas :

Si —a est dans B(oo), la représentation conforme ¢,: D — B(a) est bien
définie et le résultat découle alors du lemme 2.5.

Si —a est dans B(a), en conjuguant f par une transformation de Maebius
® qui échange a et oo, on obtient un polyndme g qui possede un point fixe
super-attractif ®(oco) et dont le bassin immédiat (P(B(co))) ne contient pas
d’autres points critiques. Dans ce cas on a bien une représentation conforme
du bassin immédiat a laquelle on peut alors appliquer le lemme 2.5.

2.4 CONSTRUCTION DE GRAPHES ADMISSIBLES

On suppose désormais que le point critique libre —a n’est ni dans B(a)
ni dans B(co) et on regarde le polyndme f comme une application a allure
rationnelle de X’ dans X ou

X=C\ (¢.((1/2D) Us((1/2D)) et X' =f"'X).

FIGURE |
Le graphe T'(0) avec, en gris, le bassin immédiat B(a) privé de (;’)(,((1/2)D)
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Pour construire un graphe admissible, on observe d’abord que, pour tout
[>1, I'angle 6 = 1/(d’ — 1) est, modulo 1, [-périodique par multiplication
par d. D apres le théoreme 2.4-a), le rayon R,(#) converge donc vers un point
périodique x répulsif ou parabolique. En prenant / assez grand, on s’assure
d’une part que ['orbite positive du point critique —a est disjointe de celle
de x et d’autre part que x est répulsif (en effet, f possede au plus une orbite
périodique parabolique car tout orbite de ce type attire un point critique). Le
théoreme 2.4-b) fournit alors un rayon externe périodique R(7) qui aboutit
en x. Avec ces rayons, on forme”) le graphe admissible suivant:

I'0) =0xU <X N (U R.(d'0) UR((d + 1)%7))) .
i>0
Sur le cercle identifié a [0,1]/(0 ~ 1), les angles d'0, 0 < i < [—1,
sont rangés en ordre croissant. On va maintenant vérifier que le graphe I'(9)
satisfait les hypotheses du théoreme 1.10.

On distingue deux types de picces de profondeur O découpées par I'(6),
selon que leur bord est formé, en dehors de 09X, de quatre rayons — deux dans
B(a), deux dans B(oco) — ou simplement de deux rayons externes. Comme
on s’intéresse surtout aux pieces du premier type, on appellera losange tout
ouvert de C dont la frontiere est I’adhérence d’exactement quatre rayons
d’angles rationnels dont deux sont dans B(a) et les deux autres dans B(co).
Les propriétés suivantes sont immédiates :

1) tout losange rencontre B(a) \ {a} suivant une partie stricte;

2) si U et V sont deux losanges tels que U NV N B(a) = {a}, alors
UNnvV={a,o};

3) l'union de deux losanges qui s’intersectent est soit un losange, soit
C \ {a,o0};

4) si U et V sont deux losanges tels que f(QU) = 0V, f(U) rencontre
V N B(a) et si U intersecte B(a) dans un secteur angulaire d’ouverture

strictement inférieure a 1/d (i.e. si 6; < 6, sont les arguments des rayons
de OU N B(a) alors 6, —6; < 1/d) , alors UN B(a) C f~1(V).

Pour le point 4), il suffit de voir que U N B(a) ne coupe pas de préimages du
bord de V. Ceci découle du fait que I’ouverture angulaire est trop petite pour
intersecter f~'(AV) N B(a), puisque OU est déja dans f~1(OV). Par suite, f
envoie U N B(a) dans V N B(a), d’ou I’affirmation.

") Souvent, par abus de langage, on dira qu’un rayon fait partie de ’adhérence ou du bord
d’une piece si cet ensemble contient au moins deux points du rayon. D’autre part, par extension,
on appellera encore rayon toute préimage itérée d’un rayon de B(a).
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On note T';(0) le graphe f! (1"(9)). Les rayons de B(a) qui font partie de
T',(0)\T'(#) ont pour angles les d'60+(j/d), 0 <i<I-1,1<j<d—1, qui
sont tous dans I’intervalle du cercle contenant 0 et délimité par 6 + (1/d) et
f/d (voir la figure 2). On se donne d’autre part un losange U(f) qui contient
R.(0)\ {a} et est bordé par R,(0 + (1/d)), R.(8/d) et deux rayons externes
faisant partie de I'1(0).

0+ 1/d
I—1p — ﬁ
d 9_9\/d+1/d d9+1/d\ .
dob
0 - 0/d
d=19+1/d
FIGURE 2

Le cas d =4, [ =3 vu dans D via ¢, avec, en pointillés, B(a) N T(0),
en continu, B(a) N (I'1(6) \ I(0)) et, en gris, U(8) N B(a)

LEMME 2.8. Tout point de J(f)N (U(@)\F1(9)> est bagué par 1(0) a la
profondeur 0.

Preuve. Lintersection U(0) N X', qui est une union de piéces de pro-
fondeur 1, est relativement compacte dans la piece de profondeur O qui
rencontre R,(0) et qu'on note Py (voir la figure 2). En effet, Py est la trace
sur X d’un losange 130 bordé dans B(a) par R,(6) et R,(8/d+1/d). Comme
1>0+1/d>6/d+1/d et 0<0/d <8, 'intersection U(Q)H(C\ﬁo)ﬂB(a)
est réduite & a. Par suite, U(9) et C \130 ne se touchent qu’'en a — pro-
priété 2) des losanges. Ainsi, U@ NX' C Py. [

LEMME 2.9. Soit 0 = 1/(d' —1) et ¢/ =1/d" —1) avec I' > I+ 1 et

[ assez grand. Tout point de OB(a) est bagué a une profondeur bornée par
l'un des graphes T(0) ou T'(6").

Preuve. On remarque tout d’abord que

((UO\TI®) U (UE)\TIEY)) N X' = (UE) UUE)) N X'
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car les graphes I'j(f) et I';(6') sont disjoints dans X’. Par suite, il suffit

de montrer qu’il existe un entier n > 0 tel que J f_i(U(H) U U(@’))
0<i<n

contienne 0B(a).

L’ouvert U(#) U U(0") est un losange que 1’on note V,, les rayons de
B(a) inclus dans 0V, sont d’angles n =0"+1/d, ( =6/d. On note n le
plus petit entier tel que n/d" < (, on va construire, pour 0 < m < n, un
ouvert V,, ayant les propriétés suivantes:

e V,NOB(a) estinclus dans |J f~i(Vy);

0<i<m

e V,, pour m < n, est un losange qui contient R,(1/d™) et est bordé

dans B(a) par R,(1/d™) et Ry(C):

e V,=C\{a}.

I existe un losange V| contenant R,(1/d) et bordé dans B(a) par R,(n/d),
R,(¢/d + 1/d), dont tout le bord est inclus dans f~!1(OVy). Alors, d’aprés
la propriété 4), Vi N B(a) C f~1(Vy). Comme (/d + 1/d > n, les losanges
Vi et Vy s’intersectent et V; = VU V| est un losange ayant les propriétés

demandées. On construit de méme un losange V/ pour tout m < n et on
pose V,, =V UV,_;. O

¢/d+1/d

Vo

FIGURE 3

Illustration de la démonstration du lemme 2.9

REMARQUES.

a) Toutes les constructions précédentes et en particulier les lemmes 2.8
et 2.9 restent évidemment valables si on prend des graphes d’angle opposé
i.e. d’angle 1 — @ avec 0 toujours de la forme 1/(d' — 1).

b) La profondeur a laquelle on parvient a baguer les points de 0B(a) est
bornée indépendamment du point considéré, mais croit avec [ et /’. Ce fait est
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insignifiant puisque I’on obtient finalement, d’aprés le lemme 1.12, que tout
point de 9B(a) est infiniment bagué par un graphe I'(f) avec ¢ = 1/ —1)
et [ assez grand.

D’aprés la remarque b) précédente, il reste & baguer le point critique —a
(qui se trouve dans K(f)) et conclure par le théoréme 1.10. On a le lemme
suivant :

LEMME 2.10. Il existe lp € N et 6 € {£1} dépendant uniquement de

a tels que pour tout 1 > ly, le point critique libre —a est bagué a la
profondeur 0 ou 1 par T(60) ou O est de la forme 1/(d' —1).

On assimile dans cet énoncé —6@ et 1 — 0.

Preuve. Pour d > 2, et [ assez grand, ’ensemble U(#) contient tous les
rayons R,(1), t € [1/2,1] et U(1 — ) tous les rayons R,(t), t € [0,1/2]. De
ce fait, U()UU(1 —6) contient B(a)\ {a}; c’est donc C\ {a} en vertu des
propriétés 1) et 3) des losanges. De plus, comme les graphes sont admissibles
(on prend [y grand dans ce but), —a n’est sur aucun graphe de profondeur 1.
Ceci résout le cas d > 2.

Pour d = 2, 'ouvert U(0) U U(1 — 0) ne recouvre plus B(a). Néanmoins,
pour tout [ > —loge/logd ou € est un rationnel petit, U(#) contient tous les
rayons R,(t), t € [1/2+¢,1] et U(1—0) tous les rayons R,(r), t € [0,1/2—¢].
On suppose donc désormais que le point critique —a est dans un losange V
bordé par R,(1/2+¢), R,(1/2 —¢€) et contenant R,(1/2). Pour voir que —a
est bagué a la profondeur 1, comme a priori il se peut que V contienne
une partie d’une préimage de B(a), on va montrer que la valeur critique
f(—a) est baguée a la profondeur O et plus précisément qu’elle se trouve dans
C\Vcu®@uu( —6).

On suppose donc que f(—a) est dans V, qui est un disque. Comme f
est de degré 3 et que —a est simple, f~'(V) est formé de deux disques et
ceux-ci ne touchent pas f~'(9V). Or il y a deux losanges Vi, V, évidents

qui ont leur bord inclus dans f~!'(AV), contiennent respectivement R,(1/4),
R,(3/4) et vérifient

1 ¢ 3 ¢
wedeom @ neg
1 5 C oV, et Ra4:i:2 C oV,.
Par suite, les deux composantes de f~!(V) sont incluses dans ViuV, qui
contient donc —a et est disjoint de V. [
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En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de 0B(a), 'un des graphes I'(d), ou I'(1 — 6) bague infiniment x et bague le
point critique —a. Le théoréeme de Yoccoz 1.10 et le lemme 2.11 ci-dessous
assurent alors que 0B(a) est localement connexe en x ce qui achéve la preuve
du théoréeme 2.1, sauf dans la cas ou le bout de —a est périodique et si x
tombe dans Imp(—a) par itération. C’est ce cas qu’il reste a étudier dans la
partie suivante 2.5.

Pour trouver des voisinages connexes d’un point x de 9B(a), on va extraire
de chaque intersection P,(x) N OB(a) un voisinage connexe de x dans OB(a)

qui est de la forme () O, 7,7") avec 7,7 € Q/Z ou
ue]0,1]

O, 7,7") = {@u(r®™) | r € Ju, 11, t € 17,7'[} .

LEMME 2.11. Tout point x de OB(a) dont 'impression () P,(x) est ré-
n>0
duite a x posseéde un systeme fondamental de voisinages connexes dans OB(a).

Preuve. Toute piece de profondeur n rencontre B(a) suivant des secteurs
du type 0@~ d", 7,7") car son bord est formé, dans B(a), (de morceaux) de
rayons rationnels et de I’équipotentielle de niveau 2~'/¢" . Par ailleurs, comme
x appartient a P,(x)N0IB(a), il possede un voisinage dans P,(x) qui rencontre
B(a). Ce voisinage rencontre alors un secteur 0~V 7'y C P,(x) N B(a)
ou R,(7), R.,(7") font partie de OP,(x). Ainsi, I’intersection

Uo= [ Ou,7,7)CP,x)
u€10,1[
est un voisinage de x dans dB(a), compact et connexe (c’est une intersection
décroissante .de parties compactes connexes). Comme 1’intersection des pieces
P,(x) se réduit au point x, la suite U, constitue un systeme fondamental de
voisinages connexes de x dans OB(a). L]

2.5 CAS D’UN BOUT CRITIQUE PERIODIQUE

On consideére a présent le graphe I' parmi I'(6) et I'(1 — 6) qui bague
le point critique libre —a (a la profondeur 0 ou 1) et on suppose que
le bout de —a est k-périodique. D’apres le théoreme de Yoccoz 1.10,

’application f*: Pii(—a) — P,(—a) est & allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est I’'impression

Imp(—a) = () Pn(—a). Deux cas se présentent alors. Si B(a) n’intersecte
n>0

\
b

pas K, la connexité locale de 0B(a) découle encore une fois du théoréme de J‘
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Yoccoz 1.10 et du lemme 2.11, car aucun point de OB(a) ne tombe dans K
par itération et toutes les impressions sont donc réduites a des singletons.
Sinon, on montre que OB(a) N K est formé d’au plus un point (lemme 2.13)
qui est un point fixe par f* noté (. Il en résulte que, si I'orbite d’un point
x € OB(a) passe dans K, la suite des parties P,(x) N 0B(a) forme, dans
OB(a), un systéme fondamental de voisinages de x puisque leur intersection
est réduite & une préimage itérée de IB(a)NK C {F}. Le lemme 2.11 permet
alors de conclure que OB(a) est localement connexe en x. Ce qui acheve la
preuve du théoreme 2.1.

Dorénavant, on suppose que KNAB(a) # & et dans la fin de cet article on
montre que OB(a) N K est formé d’au plus un point. Dans un premier temps,
on trouve un point répulsif ou parabolique dans K N dB(a) :

LEMME 2.12. 1l existe dans B(a) un rayon R,(n) qui est k-périodique
par f et aboutit en un point 3 € K N OB(a) — fixe par f*.

Preuve. On reprend les notations données juste avant le lemme 2.11.
On montre tout d’abord (par récurrence sur n) que, si une piece P, de
profondeur n rencontre B(a), Uintersection P, N B(a) est formée d’un seul
secteur du type Q(u,7,7’), ou l'intervalle ]7,7'[ du cercle a une longueur
strictement inférieure a 1/d""!.

Une piece Py de profondeur O a clairement cette propriété. D’autre part,
toute piece P,y; de profondeur n + 1 est contenue dans une piece P!, de
profondeur n et a pour image par f une (autre) piece P, de profondeur n.
Par hypothése de récurrence, P, N B(a) est du type Qun,7,,7,), avec
7! —1,| < 1/d"T!. Louvert Q(u,, 7, 7,) a donc d préimages dans B(a), qui
sont de la forme

i, ,
Q(u,7+2,7+3>, 0<i<d-1,
et |7/ — 7| < 1/d"™*. Lintersection P, N B(a) coincide alors
avec l'un de ces secteurs ouverts: elle en contient un tout entier car elle
est bordée par des rayons préimages de ceux qui bordent P, et elle ne peut
en contenir deux car deux tels secteurs different de 1/d alors que la piece

P, D P,y rencontre B(a) dans un secteur d’ouverture < 1/d (hypothése de
récurrence). On choisit alors 7, 7" pour que

1/d

ol u = u,

Pn—l—l M B(a) - Q(ua T, 7-/) .

Soit maintenant x un point de K N dB(a). S’il se trouve sur une préimage
I, du graphe I', ¢’est immédiatement le point d’aboutissement d’un rayon
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prépériodique de B(a). En prenant son image par un itéré convenable de f,
on obtient un rayon périodique qui converge vers un point 5 € KNOB(a) fixe
par f*. Si x n’est sur aucune préimage du graphe, la pice P,(x) rencontre
B(a) suivant un secteur de la forme Q2% 7,, 7)) avec |1, — 7!| < 1/d".
Les angles (7,), (7,) forment des suites adjacentes dont on note 7 la limite
commune. Comme x € K C P,(—a), nécessairement P,(x) = P,(—a) et, de
ce fait,

F4(Pusr(x) N B(@)) = Py(x) N B(a)

pour n assez grand. Par suite, d*n est dans Dintervalle ]7,,7.[ C R/Z, de
sorte que d*n = n. Le rayon d’angle 7 converge alors vers un point (3
(théoréme 2.4). Ce point 3 est fixe par f* et, comme il se trouve dans toutes
les piéces P,(—a), il est dans K N OB(a). [

LEMME 2.13. 1l existe deux rayons externes R((), R(("), d’angles (, ('
rationnels, qui aboutissent au point 3 et sont tels que la courbe de Jordan

R(OURCHUA{B} sépare K\ {B} de B(a)\ {B}.

Preuve. Dans la preuve du lemme 2.12, on a vu que P,(—a) N B(a) est
de la forme Q74" 7, 7!). Les rayons Ru(T,), R,(7!) convergent vers des
points y,, y, de OB(a) en lesquels aboutissent aussi des rayons externes
qui font partie de OP,(—a) et qu'on note respectivement R((,), R(()). La
suite ¢, (resp. () est alors croissante majorée (resp. décroissante minorée) et
converge donc vers un angle limite ¢ (resp. ¢’). De plus, comme f* est un
homéomorphisme local en les points y,, y, et que f*(P,i(—a)) = P,(—a)
pour n assez grand,

FY(RGus)) =RG), et fARC4) =R

Il en résulte que (d + l)kCn+k = (, (dans R/Z) et, par suite, que ( est
périodique de période divisant k. Les rayons R((), R(¢') convergent ainsi
vers des points y, ¥ qui sont fixes par f* et qui appartiennent & K — car
la partie des rayons R((), R({') située au-dela du potentiel -/
dans P,(—a).

D’autre part, le théoréme de redressement de A. Douady et J. H. Hubbard
[DH2, théoréeme 1] montre que f* est conjuguée a un polyndme quadratique
f.(2) = 7% +c¢ par un homéomorphisme ¢ d’un voisinage de K sur un voisinage
de I’ensemble de Julia rempli K. de f,. Les points (), o(y) et o(y’) sont
des points fixes de f. en lesquels aboutissent des arcs externes fixes par f.
— 4 savoir o(R,(n)), o(R(Q) et o(R()). Or un polyndme quadratique
posséde au plus deux points fixes parmi lesquels un seul — généralement

se trouve
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noté (3. — est I’aboutissement d’un arc externe fixe [P, théoreme A]. Par
suite, R(C), R(C') convergent nécessairement vers 3.

Finalement, R(()UR((') forme une courbe de Jordan qui sépare K \{3_} de
B(a)\ {B}. En effet, le losange V, bordé par Ru(1), Ra(t)), R(Gy) et R(G)
contient la piece P,(—a) par construction. Il contient donc K et, par suite,
au moins un point périodique répulsif p (différent de &) et un rayon externe
qui converge vers p, de sorte que ¢ # ¢’. Ainsi, la composante connexe U
de C\ (E(Q UE(C’)) qui contient p contient K \ {3} — car K ne peut
rencontrer la courbe R(¢) UR(¢") qu’en 3 et ce point ne disconnecte par K
[M, théoréme 6.10]. [
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