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150 P. ROESCH

On montre a présent que le bout de x contient une copie conforme de
chaque anneau du bout critique et que ces copies sont disjointes. Ceci entraine
que, si la somme des modules est infinie pour le bout critique, elle 1’est aussi
pour le bout de x.

Soit p la profondeur critique maximale dans la colonne O de T(x). Pour
i < p, I’anneau A;(x) coincide avec A;(xg). Pour i > p, on regarde dans 7'(x)
la premicre piece critique qu’on rencontre apres la colonne O sur la ligne i+1.
Si (i+1,j), j > 0, sont les coordonnées de ce terme, le lemme 1.24 (appliqué
a la ligne i+ 1 et a la diagonale D issue de (i + 1,0)) montre que 1’anneau
Aiyj(x) est conforme a A;(xo). Comme, par construction, j croit avec i (au
sens large), les copies conformes qu’on obtient sont disjointes. [

La proposition ci-dessous résume les trois lemmes précédents.

PROPOSITION 1.28. Soit x un point de K(f) et I un graphe admissible
qui bague le point critique xy et bague infiniment le point x. Pour que
I’impression Imp(x) soit réduite au point x, il suffit que l'une des conditions
suivantes soit remplie:

e T(x) est non récurrent ou récurrent non persistant;
e T(x) est récurrent persistant mais T(xy) ne [’est pas.

De plus, des que T(x) est récurrent persistant, le point critique xy est infiniment
bagué par 1 .

Les lemmes 1.30, 1.36 et 1.37 du paragraphe suivant reglent le cas ou
T(xg) est récurrent persistant, le point xy étant infiniment bagué par I'.

1.6 CAS D’UN TABLEAU CRITIQUE RECURRENT PERSISTANT

Dans toute cette partie, on suppose que I est un graphe admissible qui
bague infiniment le point critique X.

DEFINITION 1.29. On dit que le tableau critique T(xg) est périodique
s’il contient une colonne, autre que la colonne 0, enticrement formée de
piéces critiques. Les indices de ces colonnes totalement critiques sont alors
les multiples d’un entier k qu’on appelle période de T(xy). En fait, le tableau
T(xp) est périodique de période k si et seulement si le bout du point critique xg
est périodique de période k.

P
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LEMME 1.30. Si le tableau T(xo) du point critique est récurrent persistant
mais non périodigue, la somme des modules des anneaux du bout critique est

infinie.

Le probléme des anneaux critiques est qu’ils ont un module inférieur de
moitié a celui de leur image. Afin de compenser cette perte, on va trouver, pour
“chaque” anneau non dégénéré A,(xp), deux anneaux distincts de profondeur
plus grande, A;(xo) et Aj(xo), i,j > p, qui revétent doublement A,(xo) par un
itéré de f.

DEFINITION 1.31. On dira qu’un anneau A;(xp) est le fils d'un anneau
Ay(xo), p<i,sif =P induit un revétement double non ramifié de A;(xy) sur
Ap(xp). L'anneau A,(xp) sera donc le pére de A;(xp). On note que, si le pere
existe, 1l est unique.

Un anneau (critique) A;(xp) sera dit bon si, dans la double ligne i,i 41
qui le porte, il n’y a aucun anneau semi-critique. On verra que cette qualité
est héréditaire et qu’un bon anneau a toujours deux bons fils.

La démonstration du lemme 1.30 repose sur les quatre affirmations ci-
dessous.

AFFIRMATION 1.32.  Tout anneau (critique) a au moins un fils.

Preuve. Etant donné un anneau critique A,(xp), on considere la premiere
piece critique qu’on rencontre dans T(xg) sur la ligne p+1 aprés la colonne 0
(elle existe bien car T(xg) est récurrent). Si on note (p+1,i—p) les coordonnées
de ce terme, le lemme 1.24 montre que 1’anneau A,(xo) est une copie conforme
de A;_, (f(xo)), de sorte que A;(xp) est un fils de A,(x). [

AFFIRMATION 1.33.  Si un anneau est fils unique, il est bon.

Preuve. On suppose que A;(xp) est le fils de A,(xp) mais n’est pas bon.
Le tableau T(xy) contient alors un anneau semi-critique de profondeur i,
Ai(f/(x0)). Celui-ci se trouve nécessairement dans une colonne d’indice
J 2 i—p car la double diagonale liant le fils au pére est formée de pieces non
critiques entre la colonne O et la colonne i—p qui porte A, (ff“p(xo)) = A,(xp),
ces deux colonnes n’étant pas considérées. La regle T3) du lemme 1.18 fournit
alors un anneau semi-critique de profondeur p dans la colonne J+p et, entre
ces deux positions semi-critiques, les anneaux portés par la double diagonale
de A;(f/(xo)) sont non-critiques.
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Soit (p+1,k) les coordonnées de la premiere piéce critique rencontrée sur
la ligne p + 1 apres la colonne j+ p. L’anneau A, (f*(x0)) est critique et la
double diagonale qu’il détermine dans 7'(xg) est formée de pieces non critiques
au moins jusqu’a la colonne j. Sur cette double diagonale, le premier anneau
critique ou semi-critique rencontré se trouve a une profondeur /. Si cet anneau
est critique, c’est un fils de A,(xo) différent de A;(xp) car [ > i. Si c’est un
anneau semi-critique, la propriété T3) montre que I’anneau A;_;(f(xp)) (dans
la colonne 1) est conforme a un anneau semi-critique de profondeur p, a
savoir A, (fl_P(xo)). On note alors A, (f’”(xo)) le premier anneau critique de
profondeur p qu’on trouve a droite de A, (fl—p(xo)). D’apres le lemme 1.24,
cet anneau est I’1mage conforme de A4, (f(xo)) et Ap1m(xp) est donc un
fils de A,(xp), a nouveau différent de A;(xo) car p +m > 1. ]

AFFIRMATION 1.34.  Si un anneau est bon, il a au moins deux fils.

Preuve. Soit A,(xp) un anneau et A;(xo) un de ses fils (affirmation 1.32).
La double diagonale qui joint A;(xp) a son pere A, (fi“p(xo)) = Ap(xp) n’est
pas critique entre les colonnes 1 et i—p—1. Par ailleurs, comme la colonne i—p
n’est pas totalement critique (car T(xg) n’est pas périodique), elle porte un
anneau semi-critique de profondeur finie k > p. D’apres la propriété T3),
hors de la colonne 0, les seules positions critiques de profondeur > p sur la
double diagonale qui porte cet anneau ont pour coordonnées

(k—ali=phg+DG-p),  0q<—L.

En particulier, comme A,(xp) est bon, kK — p ne peut &tre un multiple entier
de i —p, sans quoi 'anneau A, (f**"~?(xy)) serait semi-critique. Cet anneau
A, (fk+i—2” (xo)) est donc non-critique et le lemme 1.24 assure que le premier
anneau critique de profondeur p situé plus a droite, sur une colonne d’indice
J > k+1i—2p, est I'image conforme de A; , (f(xo)). L’anneau A;;,(xg) est
donc un second fils de A,(xp). [

AFFIRMATION 1.35. Si un pere est bon, ses fils le sont aussi.

Preuve. En effet, si un anneau A,(xp) a un fils A;(xo) qui n’est pas bon, il
existe un anneau semi-critique de profondeur i. La propriété T3) permet alors
directement de trouver un anneau semi-critique de profondeur p, de sorte que
A,(xg) n’est pas bon. [

Preuve du lemme 1.30. On va montrer que, pour tout anneau critique
non dégénéré A,(xo), la somme des modules des descendants de A,(xp) est
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infinie. Pour cela, on note G,, n > 0, I’ensemble des descendants de A,(xo)
a la n-ieme génération (G, est formé des fils, G, des petits-fils...). Comme
tout anneau a un fils et au plus un pere, les ensembles G, sont non vides
et disjoints. Par ailleurs, les affirmations démontrées plus haut assurent que
chaque ensemble G, a au moins 2"~! éléments. En effet, les éléments de
G, sont les descendants des éléments de G, a la (n — 1)-ieme génération. Si
G; a au moins deux éléments, la récurrence donne 1’estimation. Si G; n’a
qu'un élément, ce fils unique est bon (affirmation 1.33) et a donc deux fils
(affirmation 1.34), lesquels sont bons (affirmation 1.35) et ainsi de suite.
D’autre part, si A € G,, le module de A vaut % modA,(xp). La somme

des modules des descendants de A,(xg) est donc infinie. []

LEMME 1.36. Si le tableau T(xg) du point critique est périodique, de
période k, l'application f*: Ppii(xo) — Pi(xo) est a allure quadratique pour
un certain entier [. L'impression Imp(xo) du point critique est alors I’ensemble
de Julia rempli de f*|p,, ) et est connexe.

Preuve. Entre la colonne O et la colonne k, la profondeur des positions
critiques est bornée par un entier i. Si A;(xo) est un anneau non dégénéré de
profondeur [ > i+ k, la piece Pi(xp) contient P;y;(xg), donc aussi Prii(x0),
et I’application fk‘P[+k(_\-0)Z Pryi(xo) — Pi(xp) est de degré 2, donc a allure
quadratique.

D’autre part, pour tout j > 0, les pieces du bout de f¥(xy) sont celles de la
colonne kj de T(xp), c’est-a-dire les pieces critiques. Par suite, f¥(xp) € P(xp)
pour tout j, ce qui montre que I’ensemble de Julia rempli associé a f* est
connexe. Enfin, cet ensemble de Julia rempli est I'intersection des préimages
Fu (P,(xo)) qui sont contenues dans P;(xp). C’est donc I'intersection sur i
des Pii(xo), c’est-a-dire I'impression Imp(xy) du point critique. []

Pour compléter la démonstration du théoréme 1.10, il reste i établir le
résultat ci-dessous.

LEMME 1.37. On suppose toujours que T(xy) est périodique de période k.
St un point x tombe par itération dans 'impression Imp(xo) du point critique,
son impression Imp(x) est une préimage conforme de Imp(xy). Sinon, et si x
est infiniment bagué par T, I'impression Imp(x) est réduite au point x.

Preuve.  Si f"(x) est dans Imp(xp) = [ Pi(xo), la colonne n de T(x) est
i>0
entierement critique. De plus, si n est le plus petit entier tel que f"(x) soit
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dans Imp(xp), les pieces critiques situées sur les colonnes 0,...,n — 1 de
T'(x) ont une profondeur bornée par un entier /. Par suite, pour tout i > /[,
I’application f” induit un homéomorphisme conforme de P;i,(x) sur P;(xp),
donc un homéomorphisme de Imp(x) sur Imp(xp).

On suppose a présent que l'orbite de x évite Imp(xp), c’est-a-dire
qu’aucune colonne de 7T(x) n’est enticrement critique. On va montrer que, Ssi
T(x) est récurrent, il est non persistant. Il suffit pour cela de construire une
suite n; sur laquelle 7 est bornée.

Dans le tableau T'(xp), entre les colonnes O et k, les positions critiques ont
une profondeur majorée par [. Dans 7(x), on regarde la colonne de plus petit
indice j ou I'on trouve des positions critiques a une profondeur strictement
supérieure a / et on note p la profondeur de la derniere position critique sur
cette colonne. L’anneau A, (fj(x)) est donc semi-critique. La propriété T3)
assure alors que la diagonale issue de la position (p+j+ 1,0) dans 7T(x) ne
contient aucune piece critique a une profondeur strictement supérieure a [+ 1.
Ainsi, T(p+j+ 1) <1+ 1 et on pose ny = p+j+ 1. On continue en
considérant la colonne de plus petit indice qui contient des positions critiques
de profondeur strictement supérieure a p. On construit ainsi une suite n; sur
laquelle 7 reste bornée par [+ 1. [

82 LA PRATIQUE

2.1 UN THEOREME DE CONNEXITE LOCALE

On s’intéresse dans la suite aux polyndémes de degré d + 1, d > 2, dont
I’un des points fixes dans C est un point critique de multiplicité d— 1. Un tel
polynéme est conjugué, par une transformation affine de C, a un polynéme
de la forme

d—+2
d

ou a désigne le point fixe critique de multiplicité d — 1. Le point —a est
alors I’unique autre point critique et sera appelé (par contraste) point critique
libre.

Le point a est un point fixe super-attractif. Son bassin d’attraction est

*) fo=a+(x+—"a)c-a, xeC,

I’ouvert
B(a) = {x ceC| f'"(x) —— a}

n— oo

d
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