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150 P. ROESCH

On montre à présent que le bout de x contient une copie conforme de

chaque anneau du bout critique et que ces copies sont disjointes. Ceci entraîne

que, si la somme des modules est infinie pour le bout critique, elle l'est aussi

pour le bout de x.
Soit p la profondeur critique maximale dans la colonne 0 de T(x). Pour

i < p, l'anneau A,(x) coïncide avec Aî(xq). Pour i > p, on regarde dans T(x)
la première pièce critique qu'on rencontre après la colonne 0 sur la ligne /+1.
Si (/+ 1 j), j > 0, sont les coordonnées de ce terme, le lemme 1.24 (appliqué
à la ligne i + 1 et à la diagonale V issue de (i 4-1,0)) montre que l'anneau

Ai+j{x) est conforme à A fixo). Comme, par construction, j croît avec i (au

sens large), les copies conformes qu'on obtient sont disjointes.

La proposition ci-dessous résume les trois lemmes précédents.

PROPOSITION 1.28. Soit x un point de K(f et F un graphe admissible

qui bague le point critique xq et bague infiniment le point x. Pour que

Vimpression Imp(x) soit réduite au point x, il suffit que l'une des conditions

suivantes soit remplie:

• T(x) est non récurrent ou récurrent non persistant ;

• T{x) est récurrent persistant mais T{xo) ne l'est pas.

De plus, dès que T(x) est récurrent persistant, le point critique xq est infiniment
bagué par T.

Les lemmes 1.30, 1.36 et 1.37 du paragraphe suivant règlent le cas où

T{xo) est récurrent persistant, le point xo étant infiniment bagué par F.

1.6 Cas d'un tableau critique récurrent persistant

Dans toute cette partie, on suppose que F est un graphe admissible qui

bague infiniment le point critique Xq

DÉFINITION 1.29. On dit que le tableau critique T(xo) est périodique
s'il contient une colonne, autre que la colonne 0, entièrement formée de

pièces critiques. Les indices de ces colonnes totalement critiques sont alors

les multiples d'un entier k qu'on appelle période de T(x<f). En fait, le tableau

T(xo) est périodique de période k si et seulement si le bout du point critique xq

est périodique de période k.
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Lemme 1.30. Si le tableau T(xo) du point critique est récurrent persistant

mais non périodique, la somme des modules des anneaux du bout critique est

infinie.

Le problème des anneaux critiques est qu'ils ont un module inférieur de

moitié à celui de leur image. Afin de compenser cette perte, on va trouver, pour

"chaque" anneau non dégénéré Ap(xo), deux anneaux distincts de profondeur

plus grande, A/(;c0) et A7(x0), ij > p, qui revêtent doublement Ap(xo) par un

itéré de /.

Définition 1.31. On dira qu'un anneau A/(v0) est le fils d'un anneau

Ap(xo), p < i, si fl~p induit un revêtement double non ramifié de A/(xo) sur

Ap(xo). L'anneau Ap(xo) sera donc le père de A/(vo). On note que, si le père

existe, il est unique.
Un anneau (critique) A/(xo) sera dit bon si, dans la double ligne i, i + 1

qui le porte, il n'y a aucun anneau semi-critique. On verra que cette qualité
est héréditaire et qu'un bon anneau a toujours deux bons fils.

La démonstration du lemme 1.30 repose sur les quatre affirmations ci-
dessous.

AFFIRMATION 1.32. Tout anneau (critique) a au moins un fils.

Preuve. Étant donné un anneau critique Ap(xo), on considère la première
pièce critique qu'on rencontre dans T(x0) sur la ligne p + 1 après la colonne 0

(elle existe bien car T(x0) est récurrent). Si on note (p+lfi—p) les coordonnées
de ce terme, le lemme 1.24 montre que l'anneau Ap(xo) est une copie conforme
de A;_i (/(v0)), de sorte que A/(v0) est un fils de Ap(x0).

AFFIRMATION 1.33. Si un anneau est fils unique, il est bon.

Preuve. On suppose que A,(x0) est le fils de Ap(x0) mais n'est pas bon.
Le tableau T(x0) contient alors un anneau semi-critique de profondeur z,

Ai(fj(xo)). Celui-ci se trouve nécessairement dans une colonne d'indice
j > i~p car la double diagonale liant le fils au père est formée de pièces non
critiques entre la colonne 0 et la colonne i-p qui porte Ap (fi~p(x{])) Ap(x0),
ces deux colonnes n'étant pas considérées. La règle T3) du lemme 1.18 fournit
alors un anneau semi-critique de profondeur p dans la colonne j +p et, entre
ces deux positions semi-critiques, les anneaux portés par la double diagonale
de A/(/:/(..\'o)) sont non-critiques.
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Soit (p+l,k) les coordonnées de la première pièce critique rencontrée sur
la ligne p + 1 après la colonne j + p. L'anneau Ap{fk(xo)) est critique et la

double diagonale qu'il détermine dans T(x<fi) est formée de pièces non critiques
au moins jusqu'à la colonne j. Sur cette double diagonale, le premier anneau

critique ou semi-critique rencontré se trouve à une profondeur /. Si cet anneau

est critique, c'est un fils de Ap{xo) différent de At{xo) car l > i. Si c'est un
anneau semi-critique, la propriété T3) montre que l'anneau A/_i(/"(xq)) (dans

la colonne 1) est conforme à un anneau semi-critique de profondeur p, à

savoir Ap{fl~p(xo)). On note alors Ap{fm(xo)) le premier anneau critique de

profondeur p qu'on trouve à droite de Ap(fl~p(xo)). D'après le lemme 1.24,

cet anneau est l'image conforme de Ap+m-\ (/(jto)) et Ap+m{xo) est donc un

fils de Ap(xo), à nouveau différent de A;(xo) car p + m > L

AFFIRMATION 1.34. Si un anneau est bon, il a au moins deux fils.

Preuve. Soit Ap(x0) un anneau et A/(xo) un de ses fils (affirmation 1.32).

La double diagonale qui joint At(xo) à son père Ap(fl~p{xo)) ^ Ap(xo) n'est

pas critique entre les colonnes 1 et i—p— 1. Par ailleurs, comme la colonne i—p

n'est pas totalement critique (car T(xo) n'est pas périodique), elle porte un

anneau semi-critique de profondeur finie k > p. D'après la propriété T3),
hors de la colonne 0, les seules positions critiques de profondeur > p sur la

double diagonale qui porte cet anneau ont pour coordonnées

(k -q{i-p),{q+ 1)0' -p}), 0 —V 7 l — p

En particulier, comme Ap(xo) est bon, k— p ne peut être un multiple entier
de i—p, sans quoi l'anneau Ap(fk+l~lp(xo)) serait semi-critique. Cet anneau

Ap{fkJrl~2p(xo)) est donc non-critique et le lemme 1.24 assure que le premier
anneau critique de profondeur p situé plus à droite, sur une colonne d'indice

j > k + i — 2p, est l'image conforme de Ay+/?_] (f(xo)). L'anneau A/+/,(xo) est

donc un second fils de Ap(x0).

AFFIRMATION 1.35. Si un père est bon, ses fils le sont aussi.

Preuve. En effet, si un anneau Ap(xo) a un fils A/(xo) qui n'est pas bon, il
existe un anneau semi-critique de profondeur i. La propriété T3) permet alors

directement de trouver un anneau semi-critique de profondeur p, de sorte que

Ap(xo) n'est pas bon.

Preuve du lemme 1.30. On va montrer que, pour tout anneau critique

non dégénéré Ap(xo), la somme des modules des descendants de Ap(xo) est
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infinie. Pour cela, on note Qn, n > 0, l'ensemble des descendants de Ap(xo)
à la /2-ième génération (Gi est formé des fils, Qo des petits-fils...). Comme

tout anneau a un fils et au plus un père, les ensembles Qn sont non vides

et disjoints. Par ailleurs, les affirmations démontrées plus haut assurent que

chaque ensemble Qn a au moins 2n~l éléments. En effet, les éléments de

Qn sont les descendants des éléments de G\ à la (n — l)-ième génération. Si

Qx a au moins deux éléments, la récurrence donne l'estimation. Si G\ n'a

qu'un élément, ce fils unique est bon (affirmation 1.33) et a donc deux fils

(affirmation 1.34), lesquels sont bons (affirmation 1.35) et ainsi de suite.

D'autre part, si A G Gn, le module de A vaut ^ modAp(xo). La somme
des modules des descendants de Ap(x0) est donc infinie.

LEMME 1.36. Si le tableau T{x0) du point critique est périodique, de

période k, Vapplication fk : Pj+k(.x0) —*• Pi(x0) est à allure quadratique pour
un certain entier /. L'impression Imp(vo) du point critique est alors l'ensemble
de Julia rempli de fk\pl+k(Xo) et est connexe.

Preuve. Entre la colonne 0 et la colonne k, la profondeur des positions
critiques est bornée par un entier i. Si Aj(x0) est un anneau non dégénéré de

profondeur />/ + £, la pièce P/(v0) contient Ë/+1(x0), donc aussi Pi+k(x0),
et l'application fk\pl+pXo) : Pi+k(x0) - P/(x0) est de degré 2, donc à allure
quadratique.

D'autre part, pour tout j > 0, les pièces du bout de fkj(x0) sont celles de la
colonne kj de T(x0), c'est-à-dire les pièces critiques. Par suite, fkj(x0) G P/(x0)
pour tout j, ce qui montre que l'ensemble de Julia rempli associé à fk est
connexe. Enfin, cet ensemble de Julia rempli est l'intersection des préimages
f~kj{Pi(x0)) qui sont contenues dans P/(v0). C'est donc l'intersection sur i
des Pm7(x0), c'est-à-dire l'impression Imp(x0) du point critique.

Pour compléter la démonstration du théorème 1.10, il reste à établir le
résultat ci-dessous.

Lemme 1.37. On suppose toujours que est périodique de période k.
Si un point x tombe par itération dans l'impression Imp(,\'o) du point
son impression Imp(x) est une préimage conforme de Imp(xo). Sinon, et si x
est infiniment bagué par F, l'impression Imp(x) est réduite au point x.

Preuve. Si /"(x) est dans Imp(x0) f| la colonne n de T(x) est
/>o

entièrement critique. De plus, si nest le plus petit entier tel que /"(x) soit
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dans Imp(xo), les pièces critiques situées sur les colonnes 0,— 1 de

T{x) ont une profondeur bornée par un entier /. Par suite, pour tout i > /,
l'application fn induit un homéomorphisme conforme de Pi+n(x) sur Pi(xq),
donc un homéomorphisme de Imp(x) sur Imp(xo).

On suppose à présent que l'orbite de x évite Imp(xo), c'est-à-dire

qu'aucune colonne de T(x) n'est entièrement critique. On va montrer que, si

T(x) est récurrent, il est non persistant. Il suffit pour cela de construire une
suite ni sur laquelle r est bornée.

Dans le tableau T(xo), entre les colonnes 0 et k, les positions critiques ont

une profondeur majorée par /. Dans T(x), on regarde la colonne de plus petit
indice j où l'on trouve des positions critiques à une profondeur strictement

supérieure à / et on note p la profondeur de la dernière position critique sur

cette colonne. L'anneau Ap(/7(x)) est donc semi-critique. La propriété T3)
assure alors que la diagonale issue de la position (p + y -f 1,0) dans T(x) ne

contient aucune pièce critique à une profondeur strictement supérieure à l + 1.

Ainsi, r(p + j + 1) < I + 1 et on pose n\ p + j + 1. On continue en

considérant la colonne de plus petit indice qui contient des positions critiques
de profondeur strictement supérieure à p. On construit ainsi une suite nt sur

laquelle r reste bornée par / + 1.

§2 La pratique

2.1 Un théorème de connexité locale
On s'intéresse dans la suite aux polynômes de degré d+ 1, d > 2, dont

l'un des points fixes dans C est un point critique de multiplicité d — 1. Un tel

polynôme est conjugué, par une transformation affine de C, à un polynôme
de la forme

(*) fi?d) — ö (yX ^(v — x G C

où a désigne le point fixe critique de multiplicité d — 1. Le point —a est

alors l'unique autre point critique et sera appelé (par contraste) point critique
libre.

Le point a est un point fixe super-attractif. Son bassin d'attraction est

l'ouvert

B(a) \x e C | fn(x) * a\
l n—*oo J
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