Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 45 (1999)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PUZZLES DE YOCCOZ POUR LES APPLICATIONS À ALLURE

RATIONNELLE

Autor: ROESCH, Pascale

Kapitel: 1.5 RÉDUCTION AU CAS D'UN TABLEAU CRITIQUE RÉCURRENT

PERSISTANT

DOI: https://doi.org/10.5169/seals-64443

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

P. ROESCH

T3) D'après T2) et T1), l'application f^i induit des revêtements doubles ramifiés de $T(x_0)_{m,0}$ sur $T(x_0)_{m-i,i}$ et de $T(x_0)_{m+1,0}$ sur $T(x_0)_{m-i+1,i}$. Par suite, $T(x_0)_{m-i+1,i}$ a une seule préimage par f^i dans $T(x_0)_{m,0}$, à savoir $T(x_0)_{m+1,0}$, ce qui empêche $T(x)_{m-i+1,n+i}$ d'être critique.

1.5 RÉDUCTION AU CAS D'UN TABLEAU CRITIQUE RÉCURRENT PERSISTANT

Dans toute cette partie, on se place dans les hypothèses du théorème 1.10. En d'autres termes, on suppose que le point critique x_0 est dans K(f) (le cas $x_0 \notin K(f)$ est réglé par la proposition 1.14), on se donne un point x de K(f) et un graphe admissible Γ qui bague le point critique x_0 et bague infiniment le point x.

En suivant le plan exposé à la fin de la partie 1.3, on cherche à évaluer le module des anneaux non dégénérés qui baguent x. Pour chaque anneau, l'estimation dépend du nombre d'images itérées qui sont critiques ou semi-critiques. Ceci conduit à utiliser la fonction τ de Yoccoz et à regarder le type de récurrence des tableaux.

DÉFINITION 1.19. On appelle fonction τ de Yoccoz la fonction de \mathbb{N} dans $\mathbb{N} \cup \{-1\}$ définie comme suit : pour tout entier $n \geq 0$, $\tau(n)$ est la profondeur du premier itéré (strict) de la pièce $P_n(x)$ qui contient le point critique x_0 ; si cet itéré n'existe pas, on pose $\tau(n) = -1$. Autrement dit, si $\Sigma(n)$ désigne l'ensemble

$$\Sigma(n) = \{i \in [0, n-1] \mid x_0 \in P_i(f^{n-i}(x))\}, \quad n \in \mathbb{N},$$

la fonction τ est donnée par

$$\tau(n) = \begin{cases} \sup \Sigma(n) & \text{si } \Sigma(n) \neq \emptyset, \\ -1 & \text{si } \Sigma(n) = \emptyset. \end{cases}$$

En particulier, $\tau(n) < n$ et, comme $P_{i+1}(f^{n-i}(x))$ est contenu dans $P_i(f^{n-i}(x))$ pour tout $i \ge 0$, $\tau(n+1) \le \tau(n) + 1$.

REMARQUE 1.20. Sur le tableau T(x), la valeur $\tau(n)$ se lit comme la profondeur de la première pièce critique qu'on rencontre strictement après $T(x)_{n,0}$ sur la diagonale issue de ce terme.

Si x n'est autre que le point critique x_0 , alors $\tau(n)$ est la profondeur du premier retour de x_0 dans une pièce du bout critique.

DÉFINITION 1.21. Un tableau T(x) est dit:

- non récurrent si la fonction τ est bornée;
- récurrent non persistant si $\liminf \tau < \infty$ et $\limsup \tau = \infty$;
- récurrent persistant si $\lim \inf \tau = \infty$.

Si un tableau T(x) est récurrent (resp. récurrent persistant, resp. non récurrent) il en est de même du tableau T(f(x)).

On va étudier l'impression du point x en fonction du type de récurrence de son tableau T(x).

LEMME 1.22. Si le tableau de x est non récurrent, on peut y trouver un anneau non dégénéré noté A_p — de profondeur p — tel que, pour une infinité d'entiers n, l'application f^{n-p} induise un revêtement double non ramifié de $A_n(x)$ sur A_p . En particulier, l'impression de x est réduite au point x.

Preuve. Si $\tau(n) \leq p$ pour tout n, le tableau T(x) ne contient aucune pièce critique au-delà de la profondeur p. Ainsi, si $A_{n_i}(x)$ est une suite d'anneaux de T(x) baguant x, chaque application

$$f^{n_i-1-p}: A_{n_i-1}(f(x)) \longrightarrow A_p(f^{n_i-p}(x)), \qquad n_i > p,$$

est un homéomorphisme conforme (lemme 1.17). Comme il n'y a qu'un nombre fini d'anneau de profondeur p, il en existe un, noté A_p , pour lequel (quitte à extraire une sous-suite des n_i) chaque application f^{n_i-p} induit un revêtement double non ramifié de $A_{n_i}(x)$ sur A_p . Par suite, la somme des modules des anneaux du bout de x est infinie et l'impression de x est réduite au point x. \square

REMARQUE 1.23. Pour le lemme 1.22 ci-dessus, il n'est pas nécessaire de savoir que le graphe Γ bague le point critique x_0 .

A présent, on établit un lemme technique qui sera utile par la suite.

LEMME 1.24. Soit \mathcal{D} une diagonale de T(x) qui ne contient aucune pièce critique à une profondeur $\geq p$. S'il existe une première pièce critique notée $P_p(f^j(x))$ sur la ligne p au-delà de \mathcal{D} , l'application f^j induit un homéomorphisme conforme de $A_{p+j-1}(x)$ sur $A_{p-1}(f^j(x))$.

																	• • •
p	\longrightarrow				Ø	Ø	\emptyset c	•	p	\longrightarrow				Ø	Ø	Ø	\mathcal{C}
				Ø									Ø		Ø	Ø	
															Ø.		
		Ø									Ø		Ø.				
	7									7	Ø	Ø.					
\mathcal{D}									\mathcal{D}		Ø						
			,		• • • •												٠
hypothèses sur $T(x)$								conclusions sur $T(x)$									

Preuve. L'anneau $A_{p-1}(f^j(x))$ est critique car $x_0 \in P_p(f^j(x))$. Pour voir que f^j induit un homéomorphisme conforme de $A_{p+j-1}(x)$ sur $A_{p-1}(f^j(x))$, il suffit donc de montrer que $\tau(p+j-1)=p-1$ et que $\tau(p+j)=p$.

Soit (p,i), i < j, le point d'intersection de \mathcal{D} avec la ligne p. Les diagonales \mathcal{D}' et \mathcal{D}'' issues respectivement des points (p+j-1,0) et (p+j,0) ne peuvent contenir de pièces critiques avant la colonne j en vertu de la propriété T1). En effet, jusqu'à la colonne i, \mathcal{D}' et \mathcal{D}'' se trouvent en-dessous de \mathcal{D} puis, jusqu'à la colonne j-1, elles sont en-dessous de la ligne p. Ceci montre exactement que $\tau(p+j-1)=p-1$ et $\tau(p+j)=p$. \square

LEMME 1.25. Si le tableau de x est récurrent non persistant, l'impression de x est réduite au point x.

REMARQUE 1.26. La preuve du lemme 1.25 ci-dessus utilise le fait que x est infiniment bagué et que le point critique x_0 est bagué par Γ . Si on suppose de plus que x_0 est infiniment bagué, on peut trouver un anneau non dégénéré $A_p(x_0)$ tel que, pour une infinité d'entiers n, l'application f^{n-p} induise un revêtement non ramifié de degré borné de $A_n(x)$ sur $A_p(x_0)$.

Preuve. Soit $A_p(x_0)$ un anneau non dégénéré baguant x_0 . On va montrer que, pour une infinité d'entiers n, le module de $A_n(x)$ est comparable à celui de $A_p(x_0)$, au sens où il existe un entier r indépendant de n tel que $\text{mod } A_n(x) \geq 2^{-r} \text{mod } A_p(x_0)$.

On pose $l = \liminf \tau < \infty$ et on envisage deux cas.

1) $p \ge l$: Dans ce cas, il existe une infinité d'anneaux du bout de f(x) qui sont conformes à $A_p(x_0)$. En effet, soit $n_i < m_i < n_{i+1}$ deux suites intercalées vérifiant $\tau(n_i) = l$ et $\tau(m_i) \ge p+1$. L'inégalité $\tau(n+1) \le \tau(n)+1$ assure qu'il existe un plus petit $k_i \in [n_i, m_i[$ pour lequel $\tau(k_i+1) = p+1$, et qu'alors $\tau(k_i) = p$. L'anneau $A_{k_i-1}(f(x))$ est donc conforme à $A_p(x_0)$. De

plus, l'anneau $A_{k_i}(x)$ est non dégénéré (car $A_p(x_0)$ l'est) et son module vaut au moins $\frac{1}{2} \mod A_p(x_0)$. Ainsi, une infinité d'anneaux du bout de x ont un module au moins égal à $\frac{1}{2} \mod A_p(x_0)$.

- 2) p < l: On distingue encore deux cas, suivant le type de récurrence du tableau critique.
- i) Si le tableau du point critique est récurrent, on se ramène au cas 1) en trouvant un anneau non dégénéré $A_q(x_0)$ avec $q \ge l$. Pour cela, on observe que le tableau critique contient une infinité de colonnes formées de pièces critiques jusqu'à la profondeur l au moins. Il existe donc, dans la colonne 0 du tableau critique, un anneau de profondeur $q \ge l$ qui est sur une même double diagonale que l'anneau $A_p(x_0)$ pris dans une colonne d'indice assez grand (supérieur à l-p). Cet anneau $A_q(x_0)$ est non dégénéré (lemme 1.17).
- ii) Si le tableau du point critique est non récurrent, une infinité d'anneaux $A_n(x)$ ont une orbite qui ne rencontre qu'un nombre fini borné d'anneaux critiques ou semi-critiques avant d'atteindre $A_p(x_0)$. D'abord, sauf dans la colonne 0, $T(x_0)$ ne contient aucune pièce critique au-delà d'une certaine profondeur k. Ensuite, dans T(x) (tableau récurrent non persistant, avec $\liminf \tau = l \in]p, \infty[$), la double ligne p, p+1 coupe une infinité de colonnes suivant deux pièces critiques. En descendant les doubles diagonales (vers le Sud-Ouest) à partir de ces intersections, on croise au plus k-p+2 anneaux critiques ou semi-critiques. En effet, la propriété T2) du lemme 1.18 montre que toute diagonale de T(x) contient, en dehors de la colonne 0, au plus une pièce critique à une profondeur supérieure à k. Les intersections des doubles diagonales ci-dessus avec la colonne 0 de T(x) fournissent ainsi, dans le bout de x, une suite d'anneaux dont les modules sont comparables au module de $A_p(x_0)$. \square

LEMME 1.27. Si le tableau de x est récurrent persistant, le point critique x_0 est infiniment bagué par Γ . De plus, si la somme des modules des anneaux du bout critique est infinie, il en est de même pour le bout de x et l'impression Imp(x) est réduite au point x.

Preuve. On montre tout d'abord que le point critique est infiniment bagué. Soit $A_{n_i}(x)$ la suite des anneaux baguant x. Comme $\tau(n)$ tend vers l'infini, on peut, quitte à extraire une sous-suite, supposer que la suite $\tau(n_i+1)$ est croissante. D'autre part, les anneaux $A_{n_i}(x)$ et $A_{\tau(n_i+1)-1}(x_0)$ proviennent d'une même double diagonale donc, d'après le lemme 1.17, $A_{\tau(n_i+1)-1}(x_0)$ est non dégénéré. Par suite, le point critique est infiniment bagué.

On montre à présent que le bout de x contient une copie conforme de chaque anneau du bout critique et que ces copies sont disjointes. Ceci entraîne que, si la somme des modules est infinie pour le bout critique, elle l'est aussi pour le bout de x.

Soit p la profondeur critique maximale dans la colonne 0 de T(x). Pour i < p, l'anneau $A_i(x)$ coïncide avec $A_i(x_0)$. Pour $i \ge p$, on regarde dans T(x) la première pièce critique qu'on rencontre après la colonne 0 sur la ligne i+1. Si (i+1,j), j>0, sont les coordonnées de ce terme, le lemme 1.24 (appliqué à la ligne i+1 et à la diagonale \mathcal{D} issue de (i+1,0)) montre que l'anneau $A_{i+j}(x)$ est conforme à $A_i(x_0)$. Comme, par construction, j croît avec i (au sens large), les copies conformes qu'on obtient sont disjointes. \square

La proposition ci-dessous résume les trois lemmes précédents.

PROPOSITION 1.28. Soit x un point de K(f) et Γ un graphe admissible qui bague le point critique x_0 et bague infiniment le point x. Pour que l'impression Imp(x) soit réduite au point x, il suffit que l'une des conditions suivantes soit remplie :

- T(x) est non récurrent ou récurrent non persistant;
- T(x) est récurrent persistant mais $T(x_0)$ ne l'est pas.

De plus, dès que T(x) est récurrent persistant, le point critique x_0 est infiniment bagué par Γ .

Les lemmes 1.30, 1.36 et 1.37 du paragraphe suivant règlent le cas où $T(x_0)$ est récurrent persistant, le point x_0 étant infiniment bagué par Γ .

1.6 Cas d'un tableau critique récurrent persistant

Dans toute cette partie, on suppose que Γ est un graphe admissible qui bague infiniment le point critique x_0 .

DÉFINITION 1.29. On dit que le tableau critique $T(x_0)$ est périodique s'il contient une colonne, autre que la colonne 0, entièrement formée de pièces critiques. Les indices de ces colonnes totalement critiques sont alors les multiples d'un entier k qu'on appelle période de $T(x_0)$. En fait, le tableau $T(x_0)$ est périodique de période k si et seulement si le bout du point critique x_0 est périodique de période k.