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142 P. ROESCH

La proposition qui suit (version triviale du théoréme de Yoccoz) regle le
cas ou le point critique xp n’est pas dans K(f), moyennant un rétrécissement
de X’. En outre elle donne une idée sur la maniére dont on peut appliquer le
lemme ci-dessus et utiliser la dynamique pour étudier la série ) . modA;(x).

PROPOSITION 1.14.  Soit f: X' — X une application a allure rationnelle
n’ayant aucun point critique et soit x un point de K(f). Si un graphe
admissible 1" bague x infiniment, ['impression Imp(x) est réduite au point x.

Preuve. Soit A I’ensemble des anneaux de la forme Py \ P, ou Py,
P; sont des pieces du puzzle de profondeurs respectives 0 et 1. Comme le
graphe I' est fini, A est un ensemble fini. Par ailleurs, comme f n’a aucun
point critique, f' induit, pour tout i > 0, un homéomorphisme conforme de
I’anneau A;(x) sur un anneau élément de A. Il en résulte d’une part qu’il
existe une infinité d’entiers i pour lesquels les images f! (Ai(x)) sont égales a
un méme anneau A € A, d’autre part que ces anneaux A;(x) ont tous le méme
module que A. Par suite, la série ) . modA;(x) diverge et le lemme 1.13 en
tire la conclusion. [

Cette preuve s’effondre évidemment dés que f a un point critique xg
dans K(f). Quand P;(x) contient xp, on peut seulement minorer le module
de A;(x) par (1/2)modA;_;(f(x)) (voir le lemme 1.17). La comparaison de
modA;(x) avec le module des anneaux de profondeur O dépend alors du
nombre d’images itérées de P;(x) qui contiennent xy et, en fin de compte,
de la récurrence du point critique xg. Si celle-ci n’est pas trop forte, on peut
encore trouver une infinité d’anneaux A;(x) ayant un méme module. Sinon,
une €tude plus approfondie de la combinatoire est nécessaire.

1.4 PRESENTATION DES TABLEAUX ET DE LEURS PROPRIETES

Soit I" un graphe admissible pour une application a allure rationnelle
simple f: X’ — X et x un point de K(f) dont ’orbite positive évite TI.

DEFINITION 1.15. Le tableau T(x) du point x est la matrice de pieces,
infinie vers la droite et le bas, dont la j-ieme colonne, j > 0, donne
en descendant les éléments du bout de f/(x). Autrement dit, I’élément de
la j-ieme colonne et i-ieme ligne (en comptant vers le bas) est la piece

T()i; = Pi(f®), i,j > 0.

Ainsi, pour tous i > 1, j > 0, linclusion P;i(f/(x)) — Pi_i(f/(x))

y
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donne une fleche verticale montante sur 7(x), tandis que I’application
Pi(fi(x)) — Pi_y (#*!(x)) induite par f fournit une fleche diagonale montante.
En outre, toutes ces fleches commutent.

Po(x) Po(f(x) Py(f*(x))
it 1 i1 £ i1 r

P O Pi(f®) O P(f) O
4 il 14 i1 £/

P>(x) O P (f(x)) O P> (fz (x)) O

Pi.(x) O P; (f(x)) O P; (fz(x)) S
A7 4 i1 174

Pii() O P(f®) © Puy(ff) O

Les diagonales sud-ouest—nord-est (le long desquelles agit la dynamique f)
seront appelées diagonales du tableau T(x). On appellera aussi double
diagonale toute paire de diagonales consécutives.

DEFINITION 1.16. On appelle anneau de profondeur i du tableau T(x)
tout anneau, éventuellement dégénéré, de la forme A;(y) = P;(y) \ Piy1(y), ol
y est dans D'orbite positive de x.

Un tel anneau est dit critique (respectivement non-critique, respectivement
semi-critique) s1 le point critique xy se trouve dans Py (y) (respectivement
hors de P;(y), respectivement dans P;(y) \ Pir1(y)).

LEMME 1.17.

1) Le caractere dégénéré ou non des anneaux du tableau est constant le
long des doubles diagonales.

2) L’image par f de 'anneau A;(y) = P;(y)\ Piy1(y), i > 0, est I’anneau
A (f(y)) si et seulement si ['anneau A;(y) n’est pas semi-critique.

Si Ai(y) est critique (resp. non-critique), f induit un revétement dou-
ble non ramifié (resp. un homéomorphisme) de A;(y) sur A,-_l(f(y)) et
modA;_; (f(»)) = 2mod A;(y) (resp. = modA;(y)).

Dans le cas ou A;(y) est semi-critique, bien que A,-_l(f(y)> ne soit pas
['image f (A,-(y)), on a la comparaison

modA;_; (f(»)) < 2modA;(y).
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Preuve. 1) Si A;(y) est dégénéré, A,_;(f(y)) I’est aussi. En effet, comme
f induit une application propre de P;(y) sur P;_;(f(y)), un point commun 2
OPi(y) et OPi;1(y) va sur un point commun a OP;i_;(f(»)) et OP;(f(»)).

De plus, comme f est ouverte, le bord de P;(f(y)) = f(Piy1(y)) est
entierement inclus dans Pi_l(f(y)) =f (P,-(y)). Par suite, si A;(y) n’est pas
dégénéré, A;_; (f(y)) ne l’est pas non plus.

2) D’apres le lemme 1.8, pour tout entier £ > 0, f induit une application
fe: Pr(y) — Pr_y (f(y)) qui est soit un homéomorphisme soit un revétement
double ramifié.

1) S1 x¢ est dans P;y1(y), les applications f; et f;+; sont des rev€tements
doubles ramifiés en xo. Par suite, /! (£ (Pi+1(»)))NPi(y) = Pis1(y) et Panneau
image f(A;(y)) coincide donc avec A;_; (f(y)). De plus, f induit un revétement
double non ramifié de A;(y) sur A;_; (f(y)).

Si A,-_l(f(y)) est non dégénéré, 1’anneau Ai_l(f(y)> est conforme a
un anneau standard A, et Iapplication f: A;(y) — Ai_1(f(»)) =~ Az se
releve en un homéomorphisme conforme A;(y) — A, par le revétement
A, — A, z +— z°. Par suite, modA,-_l(f(y)) = —2logr/(2m) et donc
modA;_; (f(y)) = 2mod A;(y).

i1) Si xp n’est pas dans P;(y), les applications f; et fii; sont des
homéomorphismes conformes. Par suite, f induit un homéomorphisme con-

forme de A;(y) sur A;_;(f(»)) et modA;_i(f(y)) = modA;(y).

iii) Si xo est dans P;(y)\ P;+1(y), I’application f; est un revétement double
ramifié tandis que f;+; est un homéomorphisme. Par suite, I’intersection
SN (Pig1(3)) N Pi(y) est formée de deux composantes connexes, Piti(y)
et une autre composante qu’on note (. L’image f (Ai(y)) contient alors

Q) =f(Pipi() . Ainsi, f(A:)) =f(Pi()).

Pour comparer les modules, on choisit un homéomorphisme conforme
de ’anneau A;_; (f(y)) sur un anneau standard A,. On considere dans A, le
cercle de rayon R passant par le point correspondant a la valeur critique f(xg).
Ramené dans 'anneau A,_; (f(y)) , ce cercle donne une courbe de Jordan I'
qui entoure f (P,-+1 (y)) et passe par la valeur critique f(xp). L'image réciproque
de I' par f est un huit que ’on décompose en ses boucles I'; et I'; entourant
respectivement P;;(y) et O et se touchant au point critique. L’application f
envoie alors I’anneau A compris entre OP;(y) et I'y U, sur I’anneau compris
entre (’9P,~_1(f(y)) et I' avec un degré 2. Par suite, modA = —5——. De
plus, le disque bordé par I'; et contenant P4 (y) est conforme au disque
bordé par I' et contenant P; (f(y)). Par suite, ’anneau A’ compris entre I
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et OP;y1(y) est conforme 2 I'anneau compris entre I' et 9P;(f(y)), donc
mod A’ = — 22/R)
27
Finalement, les anneaux A et A’ sont disjoints et homotopes a 1’anneau
A;(y), de sorte que I’inégalité de Grotzsch donne
| logR log(r/R) o 1 logr

modA;(y) = — >

dA;_ .
2 27 2 - 2 27 o l(f(y))

B f—

LEMME 1.18. Quelques propriétés du tableau T(x).

T1) Si le terme T(x);; est critique (c’est-a-dire contient le point cri-
tigue xq), il en est de méme de tous les termes situées au-dessus, i.e. du type
T(x),; avec k <.

T2) Si le terme T(x),, est critique, le triangle de T(x) situé entre la
verticale et la diagonale montantes issues de ce point est une copie du triangle
de T(xo) situé entre la verticale et la diagonale montantes issues de T(xo)m 0 ;
autrement dit,

T(x)m—i,n—H' = T(XO)m—iJ pour 0 _<_] <i<m.

T3) On suppose que T(x)y, et T(X)m—inyi, i > 0, sont deux termes
critiques et que, sur la diagonale qui les joint, aucun terme entre eux n’est
critique. Si I’anneau A,, (f” (x)) est semi-critique, il en est de méme de [’anneau
A,;l_[(f’1+i(X)> a condition que [’anneau A,,,_i(fi(xo)) — du tableau T(xy) —
soit critique.

[llustration de ces propri€tés (les symboles ¢ et @ indiquent les pieces
respectivement critiques et non-critiques).

S T el C e .. ... cC

c %] c g o
1% B 1%}

1 b . 1

L % N s 2

C it R
tableau critique : 7'(xg) tableau de x: 7T(x)

Preuve. T1) provient de ’'inclusion 7(x); g C Tk

T2) provient de I'unicité de la piece de profondeur n contenant le point
critique et de ’action diagonale de f.
-
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T3) D’apres T2) et T1), 'application f! induit des revétements doubles
ramifi€s de T(xo)m,0 sur T(xo)m—i; et de T(Xo)mt1,0 Sur T(xo)m—i+1,;. Par suite,
T(xo)m—i+1,i a une seule préimage par f“ dans T (X0)m,0, & savoir T(xo)m+1,0,
ce qui empéche T(X)pm—it+1,04i d’€tre critique. [

1.5 REDUCTION AU CAS D’UN TABLEAU CRITIQUE RECURRENT PERSISTANT

Dans toute cette partie, on se place dans les hypotheses du théoreme 1.10.
En d’autres termes, on suppose que le point critique xo est dans K(f) (le cas
xo ¢ K(f) est réglé par la proposition 1.14), on se donne un point x de K(f)
et un graphe admissible 1" qui bague le point critique xy et bague infiniment
le point x.

En suivant le plan exposé a la fin de la partie 1.3, on cherche a évaluer
le module des anneaux non dégénérés qui baguent x. Pour chaque anneau,
I’estimation dépend du nombre d’images itérées qui sont critiques ou semi-
critiques. Ceci conduit a utiliser la fonction 7 de Yoccoz et a regarder le type
de récurrence des tableaux.

DEFINITION 1.19. On appelle fonction T de Yoccoz la fonction de N dans
NU{—1} définie comme suit: pour tout entier n > 0, 7(n) est la profondeur
du premier itéré (strict) de la piece P,(x) qui contient le point critique xg ;
si cet itéré n’existe pas, on pose 7(n) = —1. Autrement dit, si X(n) désigne
I’ensemble

Xn)={i€0,n—1]|x € P(f"'®)}, neN,
la fonction 7 est donnée par

{ supX(n) si XZ(n) # 9,
T(n) = :
—1 si Xn)=0.

En particulier, 7(n) < n et, comme Py (f" (x)) est contenu dans P;(f"/(x))
pour tout i >0, 7(n+1) < 7(n)+ 1.

REMARQUE 1.20. Sur le tableau 7'(x), la valeur 7(n) se lit comme la
profondeur de la premiere piece critique qu’on rencontre strictement apres
T(x)n,0 sur la diagonale issue de ce terme. ’

Si x n’est autre que le point critique xg, alors 7(n) est la profondeur du :
premier retour de xo dans une piéce du bout critique.
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