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dans f(I',.1) =T,,. Ceci montre que I’application de P,;(x) dans P, (f(x))
induite par f est propre et est donc un revétement ramifié. Si P,4;(x) ne
contient pas le point critique, cette application est un homéomorphisme; sinon,
c’est un revétement double ramifié car le point critique est simple.

c) Comme le graphe I" est connexe, les pieces de profondeur O sont
simplement connexes. On procede ensuite par récurrence. Si P est une piece
de profondeur n+-1, son image f(P) est une piece de profondeur n et est donc
simplement connexe. Comme f induit un revétement ramifié de P sur f(P),
la formule de Riemann-Hurwitz montre que P est simplement connexe. [

DEFINITION 1.7. Si x € K(f) est un point dont I’orbite positive ne rencontre
pas I', il est contenu dans une suite infinie et décroissante de pieces. On appelle
bout de x cette suite

(Po) D PIx) D+ D Py(x) D -+ ).

et impression de x I’intersection de ces piéces

Imp(x) = (] Pulx).

n>0

Le lemme 1.8 montre que 1’application f envoie naturellement le bout de
x sur celui de f(x):

F(Po) D P D)) = (FP1(x) D F(P2(x) D - )
= (Po(f()) D Pi(f(x) D -+ ).

En particulier, on dit qu’un bout est périodigue par f s’il est égal a son image
par f* pour un k > 0.

1.3 LE THEOREME DE YOCCOZ

DEFINITION 1.9. Etant donné un graphe admissible I" pour une application
a allure rationnelle simple f, on dit qu’un point x de K(f) est bagué — i la
profondeur n — si la condition suivante est satisfaite

}_)II+1(X) - Pn(x) .

On dit que x est infiniment bagué par T s’il est bagué a une infinité de
profondeurs différentes.

Le théoreme ci-dessous, di a J.-C. Yoccoz, est un outil essentiel pour
etudier la connexité locale des ensembles de Julia (voir [H, M2]). 1 fait
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I’objet de cette premiere partie et est démontré dans les paragraphes 1.4 a
1.6. Dans la seconde partie on en donne une application.

THEOREME 1.10 (Yoccoz). Soit f: X' — X une application a allure
rationnelle ayant un unique point critique xy, lequel est simple, et soit x un
point de K(f). Etant donné un graphe admissible 1" qui bague xy et bague
infiniment x, on a [’alternative suivante :

e si le bout du point critique xy n’est pas périodique, ’impression Imp(x)
est réduite au point x;

o si le bout du point critique xo est périodique, de période k, I’application
fk: Pryx(xo) — Pi(xo) est a allure quadratique, pour un entier | assez
grand, et son ensemble de Julia rempli est ['impression Imp(xy) de xo. De
plus, selon que x tombe ou non dans Imp(xy) par itération, son impression
Imp(x) est soit une préimage conforme de Imp(xg), soit le seul point x.

REMARQUE 1.11. a) Les deux cas envisagés dans le théoreme 1.10 se
présentent. Lorsque xp et f(xo) sont séparés par I', que f(xp) est périodique
alors que xg ne l’est pas, le bout du point critique n’est pas périodique. Par
contre lorsque xp est périodique son bout est évidemment périodique.

b) Si 'impression d’un point x de K(f) est réduite a x, la suite des
piecces P,(x) forme un systeme fondamental de voisinages de x. Ainsi, si
I’intersection de K(f) avec P,(x) ou P,(x) est connexe pour tout n assez
grand, I’ensemble K(f) est localement connexe en x.

Pour exploiter le théoreme de Yoccoz, il faut donc d’abord construire des
graphes I' qui soient admissibles pour f, et en particulier stables. Lorsque
f est en fait définie sur X, la stabilité de T" est équivalente 2 la condition
f(I)NX C T, qui est un peu plus maniable.

Il faut ensuite que ces graphes baguent infiniment les points de K(f). Le
lemme suivant donne pour cela un critere bien utile.

LEMME 1.12. Soit K une partie de X' contenant son image f(K). On
suppose qu’il existe un nombre fini de graphes admissibles T°, ... T" et un
entier | tels que tout point de K soit bagué, a une profondeur inférieure a
I, par l'un des graphes U'. Alors tout point de K est infiniment bagué par
I'un des TV.

Preuve. Pour 0 < i < r, soit U; I’ensemble des points bagués a une
a

profondeur inférieure & [ par I'. Par définition, U; est la réunion des pidces
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; 4 de profondeur n 4+ 1 <[ (définies par I¥) dont ’adhérence est incluse
dans une piece P! de profondeur n. Par hypothése, la réunion des U; pour
0 <i<r recouvre K.

Si x est un point de K, son orbite (positive) reste dans K car K
contient f(K). Par suite, elle visite une infinité de fois I'un des U;, donc
aussi une infinité de fois I'une des pieces Pfl 41 C U;. Autrement dit, f"(x)
est dans P! 41 pour une infinité d’entiers n;. Comme chaque application .f"f
est ouverte et envoie proprement les piéces P 1 (X) et P 4n (X) sUr P
et Pl respectivement, le fait que P, soit inclus dans P} implique que
adhérence de P, . (x) est contenue dans P, 4, (x). Par conséquent, x est

1

bagué par I a toutes les profondeurs n+n;. [

Les paragraphes suivants de cette premiere partie exposent la preuve du
théoréme de Yoccoz 1.10. En voici auparavant un premier apercu dans lequel
on introduit quelques notions utiles.

Dans le bout d’un point x, on prend deux pieces consécutives et on regarde
leur différence A;(x) = P;(x) \ Piri(x). Si x est bagué a la profondeur i,
A;(x) est un anneau de C au sens ol son complémentaire dans C a deux
composantes connexes dont une, au moins, n’est pas un point. L’anneau A;(x)
est alors (voir [A]) conformément équivalent a un unique anneau standard

A, ={zeC|r<|g <1}, r>0.

et possede un module qui vaut

logr
27

Si OPi(x) touche OP;yi(x), on dira que A;(x) est un anneau dégénéré et on
lui attribuera un module nul. On dispose alors du critére suivant :

mod A;(x) = —

€ 10, 0] .

LEMME 1.13.  §i la série des modules des anneaux Pi(x)\ P;y1(x) diverge,
Iimpression Imp(x) de x est réduite au point x.

Preuve. C’est une conséquence directe des deux résultats classiques
suivants que 1’on trouvera par exemple dans [A]:
* siunanneau A contient une suite d’anneaux A; disjoints et tous homotopes
a A, alors modA > Zi modA; (inégalité de Grotzsch);
* si U est un disque conforme, si K C U est un compact connexe plein

(i.e. tel que U\ K soit connexe) et si le module de I’anneau A = U \ K
est infini, alors K est réduit a un point.  []
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La proposition qui suit (version triviale du théoréme de Yoccoz) regle le
cas ou le point critique xp n’est pas dans K(f), moyennant un rétrécissement
de X’. En outre elle donne une idée sur la maniére dont on peut appliquer le
lemme ci-dessus et utiliser la dynamique pour étudier la série ) . modA;(x).

PROPOSITION 1.14.  Soit f: X' — X une application a allure rationnelle
n’ayant aucun point critique et soit x un point de K(f). Si un graphe
admissible 1" bague x infiniment, ['impression Imp(x) est réduite au point x.

Preuve. Soit A I’ensemble des anneaux de la forme Py \ P, ou Py,
P; sont des pieces du puzzle de profondeurs respectives 0 et 1. Comme le
graphe I' est fini, A est un ensemble fini. Par ailleurs, comme f n’a aucun
point critique, f' induit, pour tout i > 0, un homéomorphisme conforme de
I’anneau A;(x) sur un anneau élément de A. Il en résulte d’une part qu’il
existe une infinité d’entiers i pour lesquels les images f! (Ai(x)) sont égales a
un méme anneau A € A, d’autre part que ces anneaux A;(x) ont tous le méme
module que A. Par suite, la série ) . modA;(x) diverge et le lemme 1.13 en
tire la conclusion. [

Cette preuve s’effondre évidemment dés que f a un point critique xg
dans K(f). Quand P;(x) contient xp, on peut seulement minorer le module
de A;(x) par (1/2)modA;_;(f(x)) (voir le lemme 1.17). La comparaison de
modA;(x) avec le module des anneaux de profondeur O dépend alors du
nombre d’images itérées de P;(x) qui contiennent xy et, en fin de compte,
de la récurrence du point critique xg. Si celle-ci n’est pas trop forte, on peut
encore trouver une infinité d’anneaux A;(x) ayant un méme module. Sinon,
une €tude plus approfondie de la combinatoire est nécessaire.

1.4 PRESENTATION DES TABLEAUX ET DE LEURS PROPRIETES

Soit I" un graphe admissible pour une application a allure rationnelle
simple f: X’ — X et x un point de K(f) dont ’orbite positive évite TI.

DEFINITION 1.15. Le tableau T(x) du point x est la matrice de pieces,
infinie vers la droite et le bas, dont la j-ieme colonne, j > 0, donne
en descendant les éléments du bout de f/(x). Autrement dit, I’élément de
la j-ieme colonne et i-ieme ligne (en comptant vers le bas) est la piece

T()i; = Pi(f®), i,j > 0.

Ainsi, pour tous i > 1, j > 0, linclusion P;i(f/(x)) — Pi_i(f/(x))

y
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