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138 P. ROESCH

1.2 Graphes et puzzles

Définition 1.6. Soit /: X' —» X une application à allure rationnelle

simple. On dit qu'un graphe Y (formé d'arêtes - arcs de C - et de sommets

- points de C) est admissible s'il vérifie les conditions suivantes:

• r est un graphe connexe fini inclus dans X et contenant dX ;

• T est stable au sens où f~1 (F) contient Y ni';
• l'orbite positive du point critique ne rencontre pas Y.

Des exemples de tels graphes seront construits par la suite.

Etant donné un graphe admissible Y pour f: X' X, on appelle
pièce de profondeur n, n > 0, toute composante connexe de l'ouvert
f~n(X\Y) f~n(X)\f~n(T). Le puzzle associé à (X',X,f,Y) est la collection
de toutes ces pièces.

Les pièces de profondeur n donnée sont ainsi des ouverts disjoints et tout
point x de f~nÇX \ F) se trouve dans une unique pièce de profondeur n que
l'on note Pn{x).

Le bord des pièces de profondeur 0 est contenu dans F. Pour n > 1, le

bord des pièces de profondeur n est contenu dans le graphe Yn où la suite

Yn, n > 0, est définie comme suit :

r0 r, n =rl(mx)udx',r„+1 =/-"(r,), «> 1.

Une pièce de profondeur n est donc aussi une composante connexe de

f~'\x) \r„.

LEMME 1.8. Soit Y un graphe admissible pour une application à allure
rationnelle f de X' dans X.

a) Toute pièce de profondeur n + 1 du puzzle associé à Y est incluse

dans une unique pièce de profondeur n.

b) Pour tout point x de /_(n+1)(X \ F), f induit une application de

Pn+l(x) sur Pn{f(x)) qui, selon que Pn+\{x) contient ou non l'éventuel point
critique de f, est soit un revêtement double ramifié, soit un homéomorphisme.

c) Toutes les pièces du puzzle sont simplement connexes.

Preuve, a) Cela provient de l'inclusion X' C X et de la stabilité de Y.

b) Comme les pièces de profondeur n sont les composantes connexes de

f~n(X \Y), chaque image f(Pn+i(x)) est contenue dans Pn (f(x)). De plus,

comme / est ouverte, le bord de f(Pn+1W) est inclus dans f(dPn+ i(x)), donc
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dans /(IVfi) — Y„. Ceci montre que l'application de Pn+\(x) dans Pn (/(x))
induite par / est propre et est donc un revêtement ramifié. Si P/2+i(x) ne

contient pas le point critique, cette application est un homéomorphisme ; sinon,

c'est un revêtement double ramifié car le point critique est simple.

c) Comme le graphe Y est connexe, les pièces de profondeur 0 sont

simplement connexes. On procède ensuite par récurrence. Si P est une pièce
de profondeur /? +1, son image f(P) est une pièce de profondeur n et est donc

simplement connexe. Comme / induit un revêtement ramifié de P sur f(P),
la formule de Riemann-Hurwitz montre que P est simplement connexe.

DÉFINITION 1.7. Si x E K(f) est un point dont l'orbite positive ne rencontre
pas r, il est contenu dans une suite infinie et décroissante de pièces. On appelle
bout de x cette suite

(P0(x)D Pi(x) D DD

et impression de x l'intersection de ces pièces

Imp(x) P| //.(a).
n> 0

Le lemme 1.8 montre que l'application / envoie naturellement le bout de

x sur celui de /(x) :

f((P0(X)D Plix) D (/(/Ma-)) Df(P2(x)) D • • •

{Po(f(x))DPi(f(x))D
En particulier, on dit qu'un bout est périodique par / s'il est égal à son image
par fk pour un k > 0.

1.3 Le théorème de Yoccoz

Définition 1.9. Étant donné un graphe admissible F pour une application
à allure rationnelle simple /, on dit qu'un point a de est bagué — à la
profondeur n — si la condition suivante est satisfaite:

Pn+i(x) C P„(x).
On dit que x est infiniment bagué par T s'il est bagué à une infinité de
profondeurs différentes.

Le théorème ci-dessous, dû à J.-C. Yoccoz, est un outil essentiel pour
étudier la connexité locale des ensembles de Julia (voir [H, M2]). Il fait
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