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PUZZLES DE YOCCOZ
POUR LES APPLICATIONS A ALLURE RATIONNELLE

par Pascale ROESCH

La dynamique d’une fraction rationnelle f: C=CuU{c0} — C est de
nos jours bien comprise dans I’ensemble de Fatou F(f), défini comme le plus
grand ouvert de C sur lequel les applications it€rées

"=(fo---0f), n>0,
N———
n fois
forment une famille normale (i.e. équicontinue). Un théoréeme de D. Sullivan [S]
assure en effet que chaque composante connexe U de F(f) est pré-périodique
et des résultats plus anciens de “linéarisation” permettent alors, dans la plupart
des cas, de modéliser la dynamique de f sur U. Si U contient par exemple
un unique point critique a de f et si celui-ci est fixe par f, un théoreme de
L. Bottcher [B] fournit une représentation conforme ¢ du disque unité ouvert
D C C dans U qui conjugue f|y a I'application z — z7, ou d est I’ordre de
la plus petite dérivée non nulle de f en a.

Hors de F(f), c’est-a-dire dans 1’ensemble de Julia J(f) = C \ F(f),
la construction de modeles comparables passe par une étude topologique.
Un théoreme de C. Carathéodory [C] affirme en effet qu’une représentation
conforme de D sur un ouvert Q C C se prolonge continiment au bord
si et seulement si la frontiere de € est localement connexe. Appliqué a la
représentation de Bottcher ¢: D — U, ce théoreme montre que la dynamique
de f sur OU est semi-conjuguée a la multiplication par d sur le cercle si et
seulement si QU est localement connexe. Par ailleurs, dans le cas ol f est
un polyndme et ou U est la composante de F(f) qui contient I’infini — ce
dernier étant de plus le seul point critique de f dans U —, le bord de U
est en fait ’ensemble de Julia J(f) tout entier. La question de la connexité
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locale des ensembles de Julia est donc cruciale pour comprendre la dynamique
des fractions rationnelles, de méme d’ailleurs que la question de la connexité
locale des ensembles limites est centrale dans I’étude des groupes kleiniens.
Le but de cet article est de présenter, dans un cadre élargi, la méthode des
puzzles introduite par J.-C. Yoccoz — a la suite des travaux de B. Branner et
J.H. Hubbard sur les polyndémes cubiques [BH] — pour examiner ce probléme
dans le contexte des polyndmes quadratiques.

Pour €tre localement connexe, U doit déja contenir des compacts connexes
stricts non ponctuels. On ne sait pas toujours exhiber de telles parties, mais on
y parvient cependant dans de nombreux cas en trouvant des points de coupure
grice a des résultats de A. Douady, J. H. Hubbard, D. Sullivan et J.-C. Yoccoz
qui montrent la convergence, lorsque r tend vers 1, des rayons paramétrés

r e [0, 1]!—>¢(rezi”r), ot te€Q/Z,

et caractérisent leurs limites (voir le théoreme 2.4). Une fois qu’on a obtenu
de tels continuums C C 9U, on regarde leurs préimages itérées dans OU ; il
est légitime d’espérer que leur diametre tend vers O pour la raison suivante:
d’apres les travaux de P. Fatou [F] et G. Julia [J], J(f) est ’adhérence des
points périodiques répulsifs de f et le comportement de f sur QU C J(f) est
donc a priori dilatant. En fait, cette dilatation n’est vraiment forte et uniforme
que si J(f) ne rencontre pas (ou éventuellement en un nombre fini de points)
I’ensemble post-critique P(f). Par définition, cet ensemble est I’adhérence des
orbites positives de tous les points critiques de f et le comportement de f
sur P(f) est donc plutdt contractant. S1 J(f) N P(f) est vide (resp. fini), on dit
que f est hyperbolique (resp. géométriquement finie) et la connexité locale est
bien établie [DHI1, M3, TY] (voir la partie 2.3 pour un apercu de la preuve).

Lorsque les phénomenes de contraction et de dilatation se mélent dans
I’ensemble de Julia, le probleme de la connexité locale est plus délicat et les
résultats obtenus en 1989 par J.-C. Yoccoz pour les polyndmes quadratiques
constituent un progres treés important. L’ ensemble de Julia d’un tel polynéme f
est connexe si et seulement s1 I'infini est le seul point critique dans la
composante non bornée U de F(f) et, comme on 1’a dit plus haut, J(f)
coincide avec 9U. Yoccoz se donne alors un graphe I' = ¢(I'p), ou I'n C D
est constitué d’un cercle centré en 0 et de plusieurs rayons formant un cycle
périodique par z — z° et dont les images par la représentation de Bottcher
¢: D — U convergent vers un méme point fixe de f. L’adhérence de chaque
composante de C\ I' a alors une intersection connexe (ou vide) avec J(f)
mais, sans hyperbolicité, on ne sait pas controler directement le diametre de
ses préimages itérées. Pour montrer que ce diametre tend vers O, Yoccoz
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étudie le module des anneaux P, \Pn+1, ol P,y C P, et P,, P,y sont des
composantes connexes respectives de C\f~*(I"), C\f~""TV(T). Il établit alors
la connexité locale sous certaines hypothéses en montrant que la somme de
ces modules diverge. On peut trouver des exposés sur ce travail (non publi€)
de J.-C. Yoccoz dans [H, M2].

Cet article se propose de présenter la méthode de Yoccoz dans un
contexte plus large que celui des polyndmes quadratiques, afin de la rendre
directement applicable & des fractions rationnelles de degré plus €levé (voir par
exemple [R]). Le cadre est celui des applications a allure rationnelle. Etant
donné une telle application f, on dégage, dans la premiere partie, des conditions
suffisantes (théoreme 1.10) portant sur un graphe I" pour que les composantes
connexes du complémentaire des préimages itérées f~"(I), n > 1, qui
rencontrent J(f), aient un diametre qui tende vers 0 avec n. L’exposé utilise
le langage des tableaux introduit par B. Branner et J. H. Hubbard dans [BH]
et s’inspire en partie de la these de D. Faught [Fa]. Au passage, on s’efforce
aussi d’unifier le traitement des divers types de récurrence qui apparaissent.

Dans la seconde partie, on montre comment appliquer en pratique cette
théorie pour établir un résultat concret (original) de connexité locale (théo-
reme 2.1). Précisément, on montre que si un polyndme de degré d + 1,
d > 2, a un point critique de multiplicité d — 1 qui est fixe, le bord du bassin
immédiat de ce point est une courbe de Jordan, de sorte que la dynamique y
est conjuguée a la multiplication par d sur le cercle.

§1 LA THEORIE

1.1 APPLICATIONS A ALLURE RATIONNELLE

DEFINITION 1.1.  Une application f: X' — X est dite & allure rationnelle
Si:
e X et X' sont des ouverts connexes de C # bords lisses, X contient
I’adhérence X’ de X’ et OX a un nombre fini de composantes connexes;
e f: X' — X est une application holomorphe propre qui a un nombre fini
de points critiques et se prolonge en une application continue X' — X.

Si X et X’ sont simplement connexes, une application a allure rationnelle
Jf: X" — X est une application & allure polynomiale au sens de Douady-

Hubbard [DH2]. Une application a allure polynomiale qui est de degré deux
est dite a allure quadratique.
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Avant de donner ’exemple typique d’applications a allure rationnelle, on
rappelle qu'un point x est périodigue par f s’il existe un entier p > 0 tel
que fP(x) = x, ou f? désigne le p-ieme itéré de f. De plus, un tel point x
est

répulsif si |(fP) (0] > 1,

indifférent si |(f"Y ()| =1,
attractif si ‘(fp)’(x)‘ €10, 1] et

super-attractif si (fP)(x) =0.

D’autre part, x est pré-périodique s’il existe un entier g tel que f?(x) soit
périodique. Enfin, un point critigue de f est un point x ou la dérivée f’
s’annule. La multiplicité de x est le plus grand entier m > 0 tel que
f™(x) = 0. Un point p-périodique super-attractif est donc un point fixe
et critique de f7.

EXEMPLE 1.2. Soit f: C — C une fraction rationnelle et A(f) la réunion
des orbites positives de tous ses points périodiques (super-) attractifs. Si Uy
est un voisinage ouvert de A(f) dont le bord est lisse, ne porte aucun point
critique de f, et dont I'image f(Up) est relativement compacte dans Uy, tous
les ouverts U, = f "(Up), n > 0, sont du méme type. Par suite, si on pose,
pour un entier n > 0 quelconque,

X=C\U,, X =5,

la restriction de f a X', f|x: X’ — X, est une application a allure rationnelle.
De plus, pour n assez grand, U, contient tous les points critiques de f qui
sont attirés par A(f) de sorte que ceux-cl n’apparaissent pas comme points
critiques de fly .

Par exemple, pour f(z) = z2 — 1. Le point critique 0 est périodique de
période 2 de sorte que pour r suffisamment petit, f> envoie le disque D(0, r)
strictement a l'intérieur de lui-méme. L’application f admet une branche
inverse définie sur C\ {z € R |z < —1} a valeur dans le demi-plan x < 0.
On peut donc trouver un petit disque D’ contenant —1 tel que f(D’) soit
compris entre D(0,7) et £2(D(0,r)) strictement. Ainsi, D’ contient f(D(0, r))
et D contient f(D’). Par contre pour R grand f~!'(D(0,R?)) est proche du
disque de rayon R, son d’adhérence est donc dans D(0, R?). Ceci permet
de voir le polyndme f comme une application a allure rationnelle en posant :
X = D(0,R»)\ (f(D(O0, ) Uf(D")) et X' =f~(X). Dans cet exemple, illustré
par la figure 0, I’application f|y» n’a plus de points critiques.
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FIGURE 0

Le polyndme z> — I présenté comme application a allure rationnelle

f: X" — X avec X’ en noir et X en gris

En particulier, s1 f: C — C est une fraction rationnelle hyperbolique, c’est-
a-dire dont chaque point critique est attiré par ’orbite d’un point périodique
(super-) attractif, ’application a allure rationnelle qu’on obtient par le procédé
général décrit ci-dessus (pour n grand) n’a aucun point critique. Dans la suite,
on regarde plus spécialement le cas ou il reste un unique point critique :

DEFINITION 1.3. Une application a allure rationnelle f: X’ — X est dite
simple si elle a au plus un point critique, lequel est simple, c’est-a-dire de
multiplicité 1.

DEFINITION 1.4. L’ensemble de Julia rempli d’une application 2 allure
rationnelle (quelconque) f: X' — X est I’ensemble K(f) des points x de X’
dont tous les itérés f”(x) sont définis et restent dans X. Autrement dit,

K@) =[)f"X).

n>0

REMARQUE 1.5. L’ensemble de Julia rempli K(f) de f est compact car
il coincide avec I'intersection des compacts f~*(X'), n > 0.

D’autre part, la famille {f"} est normale sur I'intérieur de K(f) car I’orbite
de tout point de K(f) évite I’ensemble X \ X’ qui contient au moins trois
points. Par contre, pres d’un point x de la frontiere de K(f), la famille {f"}
n’est pas équicontinue: on peut trouver des points x; tendant vers x et des

entiers n; tendant vers 1’infini tels que f"(x;) soit hors de X’ et donc loin de
f"(x) € K(f) pour tout ;.

e
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1.2  GRAPHES ET PUZZLES

DEFINITION 1.6. Soit f: X’ — X une application a allure rationnelle
simple. On dit qu’un graphe I" (formé d’arétes — arcs de C — et de sommets
— points de C) est admissible s’il vérifie les conditions suivantes:

e T" est un graphe connexe fini inclus dans X et contenant OX ;
e T est stable au sens ou f~!(I") contient ' NX’;
e [’orbite positive du point critique ne rencontre pas I.

Des exemples de tels graphes seront construits par la suite.

Etant donné un graphe admissible I' pour f: X' — X, on appelle
piece de profondeur n, n > 0, toute composante connexe de 1’ouvert
FXN\D) =X \f (). Le puzzle associé a (X', X,f,T’) est la collection
de toutes ces pieces.

Les pieces de profondeur n donnée sont ainsi des ouverts disjoints et tout
point x de f~"(X\T') se trouve dans une unique piece de profondeur n que
I’on note P,(x).

Le bord des pieces de profondeur O est contenu dans I'. Pour n > 1, le
bord des pieces de profondeur n est contenu dans le graphe I', ou la suite
I',, n >0, est définite comme suit:

Ih=0C, I=f'Cnxyudx’, ..., T.q=r"T), n>1.

Une piece de profondeur n est donc aussi une composante connexe de

FTMXONT.

LEMME 1.8. Soit I' un graphe admissible pour une application a allure
rationnelle f de X' dans X.

a) Toute piéce de profondeur n -+ 1 du puzzle associé a T est incluse
dans une unique piece de profondeur n.

b) Pour tout point x de f~"tD(X\T), f induit une application de
P,y1(x) sur P, (f(x)) qui, selon que P, 1(x) contient ou non l’éventuel point
critique de f, est soit un revétement double ramifié, soit un homéomorphisme.

c) Toutes les pieces du puzzle sont simplement connexes.

Preuve. a) Cela provient de I’inclusion X’ C X et de la stabilité de T .
b) Comme les pieces de profondeur n sont les composantes connexes de
fMX\T), chaque image f(P,41(x)) est contenue dans P,(f(x)). De plus, -
comme f est ouverte, le bord de f (Pn+ i (x)) est inclus dans f'((?P,1+1(x)) , donc
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dans f(I',.1) =T,,. Ceci montre que I’application de P,;(x) dans P, (f(x))
induite par f est propre et est donc un revétement ramifié. Si P,4;(x) ne
contient pas le point critique, cette application est un homéomorphisme; sinon,
c’est un revétement double ramifié car le point critique est simple.

c) Comme le graphe I" est connexe, les pieces de profondeur O sont
simplement connexes. On procede ensuite par récurrence. Si P est une piece
de profondeur n+-1, son image f(P) est une piece de profondeur n et est donc
simplement connexe. Comme f induit un revétement ramifié de P sur f(P),
la formule de Riemann-Hurwitz montre que P est simplement connexe. [

DEFINITION 1.7. Si x € K(f) est un point dont I’orbite positive ne rencontre
pas I', il est contenu dans une suite infinie et décroissante de pieces. On appelle
bout de x cette suite

(Po) D PIx) D+ D Py(x) D -+ ).

et impression de x I’intersection de ces piéces

Imp(x) = (] Pulx).

n>0

Le lemme 1.8 montre que 1’application f envoie naturellement le bout de
x sur celui de f(x):

F(Po) D P D)) = (FP1(x) D F(P2(x) D - )
= (Po(f()) D Pi(f(x) D -+ ).

En particulier, on dit qu’un bout est périodigue par f s’il est égal a son image
par f* pour un k > 0.

1.3 LE THEOREME DE YOCCOZ

DEFINITION 1.9. Etant donné un graphe admissible I" pour une application
a allure rationnelle simple f, on dit qu’un point x de K(f) est bagué — i la
profondeur n — si la condition suivante est satisfaite

}_)II+1(X) - Pn(x) .

On dit que x est infiniment bagué par T s’il est bagué a une infinité de
profondeurs différentes.

Le théoreme ci-dessous, di a J.-C. Yoccoz, est un outil essentiel pour
etudier la connexité locale des ensembles de Julia (voir [H, M2]). 1 fait
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I’objet de cette premiere partie et est démontré dans les paragraphes 1.4 a
1.6. Dans la seconde partie on en donne une application.

THEOREME 1.10 (Yoccoz). Soit f: X' — X une application a allure
rationnelle ayant un unique point critique xy, lequel est simple, et soit x un
point de K(f). Etant donné un graphe admissible 1" qui bague xy et bague
infiniment x, on a [’alternative suivante :

e si le bout du point critique xy n’est pas périodique, ’impression Imp(x)
est réduite au point x;

o si le bout du point critique xo est périodique, de période k, I’application
fk: Pryx(xo) — Pi(xo) est a allure quadratique, pour un entier | assez
grand, et son ensemble de Julia rempli est ['impression Imp(xy) de xo. De
plus, selon que x tombe ou non dans Imp(xy) par itération, son impression
Imp(x) est soit une préimage conforme de Imp(xg), soit le seul point x.

REMARQUE 1.11. a) Les deux cas envisagés dans le théoreme 1.10 se
présentent. Lorsque xp et f(xo) sont séparés par I', que f(xp) est périodique
alors que xg ne l’est pas, le bout du point critique n’est pas périodique. Par
contre lorsque xp est périodique son bout est évidemment périodique.

b) Si 'impression d’un point x de K(f) est réduite a x, la suite des
piecces P,(x) forme un systeme fondamental de voisinages de x. Ainsi, si
I’intersection de K(f) avec P,(x) ou P,(x) est connexe pour tout n assez
grand, I’ensemble K(f) est localement connexe en x.

Pour exploiter le théoreme de Yoccoz, il faut donc d’abord construire des
graphes I' qui soient admissibles pour f, et en particulier stables. Lorsque
f est en fait définie sur X, la stabilité de T" est équivalente 2 la condition
f(I)NX C T, qui est un peu plus maniable.

Il faut ensuite que ces graphes baguent infiniment les points de K(f). Le
lemme suivant donne pour cela un critere bien utile.

LEMME 1.12. Soit K une partie de X' contenant son image f(K). On
suppose qu’il existe un nombre fini de graphes admissibles T°, ... T" et un
entier | tels que tout point de K soit bagué, a une profondeur inférieure a
I, par l'un des graphes U'. Alors tout point de K est infiniment bagué par
I'un des TV.

Preuve. Pour 0 < i < r, soit U; I’ensemble des points bagués a une
a

profondeur inférieure & [ par I'. Par définition, U; est la réunion des pidces
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; 4 de profondeur n 4+ 1 <[ (définies par I¥) dont ’adhérence est incluse
dans une piece P! de profondeur n. Par hypothése, la réunion des U; pour
0 <i<r recouvre K.

Si x est un point de K, son orbite (positive) reste dans K car K
contient f(K). Par suite, elle visite une infinité de fois I'un des U;, donc
aussi une infinité de fois I'une des pieces Pfl 41 C U;. Autrement dit, f"(x)
est dans P! 41 pour une infinité d’entiers n;. Comme chaque application .f"f
est ouverte et envoie proprement les piéces P 1 (X) et P 4n (X) sUr P
et Pl respectivement, le fait que P, soit inclus dans P} implique que
adhérence de P, . (x) est contenue dans P, 4, (x). Par conséquent, x est

1

bagué par I a toutes les profondeurs n+n;. [

Les paragraphes suivants de cette premiere partie exposent la preuve du
théoréme de Yoccoz 1.10. En voici auparavant un premier apercu dans lequel
on introduit quelques notions utiles.

Dans le bout d’un point x, on prend deux pieces consécutives et on regarde
leur différence A;(x) = P;(x) \ Piri(x). Si x est bagué a la profondeur i,
A;(x) est un anneau de C au sens ol son complémentaire dans C a deux
composantes connexes dont une, au moins, n’est pas un point. L’anneau A;(x)
est alors (voir [A]) conformément équivalent a un unique anneau standard

A, ={zeC|r<|g <1}, r>0.

et possede un module qui vaut

logr
27

Si OPi(x) touche OP;yi(x), on dira que A;(x) est un anneau dégénéré et on
lui attribuera un module nul. On dispose alors du critére suivant :

mod A;(x) = —

€ 10, 0] .

LEMME 1.13.  §i la série des modules des anneaux Pi(x)\ P;y1(x) diverge,
Iimpression Imp(x) de x est réduite au point x.

Preuve. C’est une conséquence directe des deux résultats classiques
suivants que 1’on trouvera par exemple dans [A]:
* siunanneau A contient une suite d’anneaux A; disjoints et tous homotopes
a A, alors modA > Zi modA; (inégalité de Grotzsch);
* si U est un disque conforme, si K C U est un compact connexe plein

(i.e. tel que U\ K soit connexe) et si le module de I’anneau A = U \ K
est infini, alors K est réduit a un point.  []




142 P. ROESCH

La proposition qui suit (version triviale du théoréme de Yoccoz) regle le
cas ou le point critique xp n’est pas dans K(f), moyennant un rétrécissement
de X’. En outre elle donne une idée sur la maniére dont on peut appliquer le
lemme ci-dessus et utiliser la dynamique pour étudier la série ) . modA;(x).

PROPOSITION 1.14.  Soit f: X' — X une application a allure rationnelle
n’ayant aucun point critique et soit x un point de K(f). Si un graphe
admissible 1" bague x infiniment, ['impression Imp(x) est réduite au point x.

Preuve. Soit A I’ensemble des anneaux de la forme Py \ P, ou Py,
P; sont des pieces du puzzle de profondeurs respectives 0 et 1. Comme le
graphe I' est fini, A est un ensemble fini. Par ailleurs, comme f n’a aucun
point critique, f' induit, pour tout i > 0, un homéomorphisme conforme de
I’anneau A;(x) sur un anneau élément de A. Il en résulte d’une part qu’il
existe une infinité d’entiers i pour lesquels les images f! (Ai(x)) sont égales a
un méme anneau A € A, d’autre part que ces anneaux A;(x) ont tous le méme
module que A. Par suite, la série ) . modA;(x) diverge et le lemme 1.13 en
tire la conclusion. [

Cette preuve s’effondre évidemment dés que f a un point critique xg
dans K(f). Quand P;(x) contient xp, on peut seulement minorer le module
de A;(x) par (1/2)modA;_;(f(x)) (voir le lemme 1.17). La comparaison de
modA;(x) avec le module des anneaux de profondeur O dépend alors du
nombre d’images itérées de P;(x) qui contiennent xy et, en fin de compte,
de la récurrence du point critique xg. Si celle-ci n’est pas trop forte, on peut
encore trouver une infinité d’anneaux A;(x) ayant un méme module. Sinon,
une €tude plus approfondie de la combinatoire est nécessaire.

1.4 PRESENTATION DES TABLEAUX ET DE LEURS PROPRIETES

Soit I" un graphe admissible pour une application a allure rationnelle
simple f: X’ — X et x un point de K(f) dont ’orbite positive évite TI.

DEFINITION 1.15. Le tableau T(x) du point x est la matrice de pieces,
infinie vers la droite et le bas, dont la j-ieme colonne, j > 0, donne
en descendant les éléments du bout de f/(x). Autrement dit, I’élément de
la j-ieme colonne et i-ieme ligne (en comptant vers le bas) est la piece

T()i; = Pi(f®), i,j > 0.

Ainsi, pour tous i > 1, j > 0, linclusion P;i(f/(x)) — Pi_i(f/(x))

y
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donne une fleche verticale montante sur 7(x), tandis que I’application
Pi(fi(x)) — Pi_y (#*!(x)) induite par f fournit une fleche diagonale montante.
En outre, toutes ces fleches commutent.

Po(x) Po(f(x) Py(f*(x))
it 1 i1 £ i1 r

P O Pi(f®) O P(f) O
4 il 14 i1 £/

P>(x) O P (f(x)) O P> (fz (x)) O

Pi.(x) O P; (f(x)) O P; (fz(x)) S
A7 4 i1 174

Pii() O P(f®) © Puy(ff) O

Les diagonales sud-ouest—nord-est (le long desquelles agit la dynamique f)
seront appelées diagonales du tableau T(x). On appellera aussi double
diagonale toute paire de diagonales consécutives.

DEFINITION 1.16. On appelle anneau de profondeur i du tableau T(x)
tout anneau, éventuellement dégénéré, de la forme A;(y) = P;(y) \ Piy1(y), ol
y est dans D'orbite positive de x.

Un tel anneau est dit critique (respectivement non-critique, respectivement
semi-critique) s1 le point critique xy se trouve dans Py (y) (respectivement
hors de P;(y), respectivement dans P;(y) \ Pir1(y)).

LEMME 1.17.

1) Le caractere dégénéré ou non des anneaux du tableau est constant le
long des doubles diagonales.

2) L’image par f de 'anneau A;(y) = P;(y)\ Piy1(y), i > 0, est I’anneau
A (f(y)) si et seulement si ['anneau A;(y) n’est pas semi-critique.

Si Ai(y) est critique (resp. non-critique), f induit un revétement dou-
ble non ramifié (resp. un homéomorphisme) de A;(y) sur A,-_l(f(y)) et
modA;_; (f(»)) = 2mod A;(y) (resp. = modA;(y)).

Dans le cas ou A;(y) est semi-critique, bien que A,-_l(f(y)> ne soit pas
['image f (A,-(y)), on a la comparaison

modA;_; (f(»)) < 2modA;(y).
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Preuve. 1) Si A;(y) est dégénéré, A,_;(f(y)) I’est aussi. En effet, comme
f induit une application propre de P;(y) sur P;_;(f(y)), un point commun 2
OPi(y) et OPi;1(y) va sur un point commun a OP;i_;(f(»)) et OP;(f(»)).

De plus, comme f est ouverte, le bord de P;(f(y)) = f(Piy1(y)) est
entierement inclus dans Pi_l(f(y)) =f (P,-(y)). Par suite, si A;(y) n’est pas
dégénéré, A;_; (f(y)) ne l’est pas non plus.

2) D’apres le lemme 1.8, pour tout entier £ > 0, f induit une application
fe: Pr(y) — Pr_y (f(y)) qui est soit un homéomorphisme soit un revétement
double ramifié.

1) S1 x¢ est dans P;y1(y), les applications f; et f;+; sont des rev€tements
doubles ramifiés en xo. Par suite, /! (£ (Pi+1(»)))NPi(y) = Pis1(y) et Panneau
image f(A;(y)) coincide donc avec A;_; (f(y)). De plus, f induit un revétement
double non ramifié de A;(y) sur A;_; (f(y)).

Si A,-_l(f(y)) est non dégénéré, 1’anneau Ai_l(f(y)> est conforme a
un anneau standard A, et Iapplication f: A;(y) — Ai_1(f(»)) =~ Az se
releve en un homéomorphisme conforme A;(y) — A, par le revétement
A, — A, z +— z°. Par suite, modA,-_l(f(y)) = —2logr/(2m) et donc
modA;_; (f(y)) = 2mod A;(y).

i1) Si xp n’est pas dans P;(y), les applications f; et fii; sont des
homéomorphismes conformes. Par suite, f induit un homéomorphisme con-

forme de A;(y) sur A;_;(f(»)) et modA;_i(f(y)) = modA;(y).

iii) Si xo est dans P;(y)\ P;+1(y), I’application f; est un revétement double
ramifié tandis que f;+; est un homéomorphisme. Par suite, I’intersection
SN (Pig1(3)) N Pi(y) est formée de deux composantes connexes, Piti(y)
et une autre composante qu’on note (. L’image f (Ai(y)) contient alors

Q) =f(Pipi() . Ainsi, f(A:)) =f(Pi()).

Pour comparer les modules, on choisit un homéomorphisme conforme
de ’anneau A;_; (f(y)) sur un anneau standard A,. On considere dans A, le
cercle de rayon R passant par le point correspondant a la valeur critique f(xg).
Ramené dans 'anneau A,_; (f(y)) , ce cercle donne une courbe de Jordan I'
qui entoure f (P,-+1 (y)) et passe par la valeur critique f(xp). L'image réciproque
de I' par f est un huit que ’on décompose en ses boucles I'; et I'; entourant
respectivement P;;(y) et O et se touchant au point critique. L’application f
envoie alors I’anneau A compris entre OP;(y) et I'y U, sur I’anneau compris
entre (’9P,~_1(f(y)) et I' avec un degré 2. Par suite, modA = —5——. De
plus, le disque bordé par I'; et contenant P4 (y) est conforme au disque
bordé par I' et contenant P; (f(y)). Par suite, ’anneau A’ compris entre I
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et OP;y1(y) est conforme 2 I'anneau compris entre I' et 9P;(f(y)), donc
mod A’ = — 22/R)
27
Finalement, les anneaux A et A’ sont disjoints et homotopes a 1’anneau
A;(y), de sorte que I’inégalité de Grotzsch donne
| logR log(r/R) o 1 logr

modA;(y) = — >

dA;_ .
2 27 2 - 2 27 o l(f(y))

B f—

LEMME 1.18. Quelques propriétés du tableau T(x).

T1) Si le terme T(x);; est critique (c’est-a-dire contient le point cri-
tigue xq), il en est de méme de tous les termes situées au-dessus, i.e. du type
T(x),; avec k <.

T2) Si le terme T(x),, est critique, le triangle de T(x) situé entre la
verticale et la diagonale montantes issues de ce point est une copie du triangle
de T(xo) situé entre la verticale et la diagonale montantes issues de T(xo)m 0 ;
autrement dit,

T(x)m—i,n—H' = T(XO)m—iJ pour 0 _<_] <i<m.

T3) On suppose que T(x)y, et T(X)m—inyi, i > 0, sont deux termes
critiques et que, sur la diagonale qui les joint, aucun terme entre eux n’est
critique. Si I’anneau A,, (f” (x)) est semi-critique, il en est de méme de [’anneau
A,;l_[(f’1+i(X)> a condition que [’anneau A,,,_i(fi(xo)) — du tableau T(xy) —
soit critique.

[llustration de ces propri€tés (les symboles ¢ et @ indiquent les pieces
respectivement critiques et non-critiques).

S T el C e .. ... cC

c %] c g o
1% B 1%}

1 b . 1

L % N s 2

C it R
tableau critique : 7'(xg) tableau de x: 7T(x)

Preuve. T1) provient de ’'inclusion 7(x); g C Tk

T2) provient de I'unicité de la piece de profondeur n contenant le point
critique et de ’action diagonale de f.
-
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T3) D’apres T2) et T1), 'application f! induit des revétements doubles
ramifi€s de T(xo)m,0 sur T(xo)m—i; et de T(Xo)mt1,0 Sur T(xo)m—i+1,;. Par suite,
T(xo)m—i+1,i a une seule préimage par f“ dans T (X0)m,0, & savoir T(xo)m+1,0,
ce qui empéche T(X)pm—it+1,04i d’€tre critique. [

1.5 REDUCTION AU CAS D’UN TABLEAU CRITIQUE RECURRENT PERSISTANT

Dans toute cette partie, on se place dans les hypotheses du théoreme 1.10.
En d’autres termes, on suppose que le point critique xo est dans K(f) (le cas
xo ¢ K(f) est réglé par la proposition 1.14), on se donne un point x de K(f)
et un graphe admissible 1" qui bague le point critique xy et bague infiniment
le point x.

En suivant le plan exposé a la fin de la partie 1.3, on cherche a évaluer
le module des anneaux non dégénérés qui baguent x. Pour chaque anneau,
I’estimation dépend du nombre d’images itérées qui sont critiques ou semi-
critiques. Ceci conduit a utiliser la fonction 7 de Yoccoz et a regarder le type
de récurrence des tableaux.

DEFINITION 1.19. On appelle fonction T de Yoccoz la fonction de N dans
NU{—1} définie comme suit: pour tout entier n > 0, 7(n) est la profondeur
du premier itéré (strict) de la piece P,(x) qui contient le point critique xg ;
si cet itéré n’existe pas, on pose 7(n) = —1. Autrement dit, si X(n) désigne
I’ensemble

Xn)={i€0,n—1]|x € P(f"'®)}, neN,
la fonction 7 est donnée par

{ supX(n) si XZ(n) # 9,
T(n) = :
—1 si Xn)=0.

En particulier, 7(n) < n et, comme Py (f" (x)) est contenu dans P;(f"/(x))
pour tout i >0, 7(n+1) < 7(n)+ 1.

REMARQUE 1.20. Sur le tableau 7'(x), la valeur 7(n) se lit comme la
profondeur de la premiere piece critique qu’on rencontre strictement apres
T(x)n,0 sur la diagonale issue de ce terme. ’

Si x n’est autre que le point critique xg, alors 7(n) est la profondeur du :
premier retour de xo dans une piéce du bout critique.
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DEFINITION 1.21. Un tableau T(x) est dit:
o non récurrent si la fonction 7 est bornée;
o récurrent non persistant si liminf7 < oo et limsup7 = 00;

o récurrent persistant si liminf 7 = oc.

Si un tableau 7(x) est récurrent (resp. récurrent persistant, resp. non
récurrent) il en est de méme du tableau T(f(x)).

On va étudier I’impression du point x en fonction du type de récurrence
de son tableau T(x).

LEMME 1.22. Si le tableau de x est non récurrent, on peut y trouver un
anneau non dégénéré noté A, — de profondeur p — tel que, pour une infinité
d’entiers n, Uapplication f" P induise un revétement double non ramifié de
A,(x) sur A,. En particulier, I'impression de x est réduite au point x.

Preuve. Si 7(n) < p pour tout n, le tableau 7T(x) ne contient aucune piece
critique au-dela de la profondeur p. Ainsi, si A, (x) est une suite d’anneaux
de T(x) baguant x, chaque application

f}li—l—b: Aili—l (f(x)) s Ap (fﬂi—p(x>>; n>p.

est un homéomorphisme conforme (lemme 1.17). Comme il n’y a qu’un
nombre fini d’anneau de profondeur p, il en existe un, not€ A,, pour lequel
(quitte a extraire une sous-suite des n;) chaque application f™~? induit un
revétement double non ramifié de A, (x) sur A,. Par suite, la somme des
modules des anneaux du bout de x est infinie et I’impression de x est réduite
au point x. []

REMARQUE 1.23. Pour le lemme 1.22 ci-dessus, il n’est pas nécessaire
de savoir que le graphe I' bague le point critique xp.

A présent, on €tablit un lemme technique qui sera utile par la suite.

LEMME 1.24. Soit D une diagonale de T(x) qui ne contient aucune
piece critique a une profondeur > p. S’il existe une premiére piéce critique
notée P,,(f/(x)) sur la ligne p au-dela de D, ’application f/ induit un
homéomorphisme conforme de A,yj_\(x) sur A, (fj (x)).
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.........................................

p — g O I c p — o g I c
10 B 1%] 1% ]
.................. A 7 AU
1 %] Do
S N B B
D D D
hypothésgg sur T(x) COHClUSiO;I,S sur T(x)

Preuve. L’anneau A,_;(f/(x)) est critique car xo € P,(f/(x)). Pour voir
que £/ induit un homéomorphisme conforme de Appj—1(x) sur A, (ff(x)),
il suffit donc de montrer que 7(p+j—1)=p—1 et que 7(p+j) =p.

Soit (p,i), i < j, le point d’intersection de D avec la ligne p. Les
diagonales D’ et D’ issues respectivement des points (p +j — 1,0) et
(p +J,0) ne peuvent contenir de pieces critiques avant la colonne j en vertu
de la propriété T1). En effet, jusqu’a la colonne i, D’ et D" se trouvent
en-dessous de D puis, jusqu’a la colonne j — 1, elles sont en-dessous de la
ligne p. Ceci montre exactement que 7(p+j—1)=p—1et 7(p+j) =p. U

LEMME 1.25. Si le tableau de x est récurrent non persistant, |'impression
de x est réduite au point x.

REMARQUE 1.26. La preuve du lemme 1.25 ci-dessus utilise le fait que x
est infiniment bagué et que le point critique xy est bagué par I'. Si on suppose
de plus que xp est infiniment bagué, on peut trouver un anneau non dégénéré
Ap(xo) tel que, pour une infinité d’entiers n, I’application f"~7 induise un
revétement non ramifié de degré borné de A,(x) sur A,(xp).

Preuve. Soit A,(xp) un anneau non dégénéré baguant xo. On va montrer
que, pour une infinité d’entiers n, le module de A,(x) est comparable a
celui de A,(xg), au sens ou il existe un entier r indépendant de n tel que
modA,(x) > 27" modA,(xp).

On pose [ = liminf7 < oo et on envisage deux cas.

1) p > I: Dans ce cas, il existe une infinit€ d’anneaux du bout de
f(x) qui sont conformes a Ap,(xo). En effet, soit n; < m; < n;4; deux suites
intercalées vérifiant 7(n;) = [ et 7(m;) > p+1. L'inégalit€¢ 7(n+1) < 7(n)+1
assure qu’il existe un plus petit k; € [n;, m;[ pour lequel 7(k;+ 1) =p+1,
et qu’alors 7(k;) = p. L’anneau Ay, _; (f(x)) est donc conforme a A,(xp). De




PUZZLES DE YOCCOZ 149

plus, ’anneau Ay, (x) est non dégénéré (car A,(xo) I’est) et son module vaut
au moins %modAp(xo). Ainsi, une infinité d’anneaux du bout de x ont un
module au moins égal a %modAp(xo).

2) p < [: On distingue encore deux cas, suivant le type de récurrence
du tableau critique.

i) Si le tableau du point critique est récurrent, on se ramene au cas 1)
en trouvant un anneau non dégénéré A,(xo) avec g > [. Pour cela, on
observe que le tableau critique contient une infinité de colonnes formées
de pieces critiques jusqu’a la profondeur / au moins. Il existe donc, dans
la colonne O du tableau critique, un anneau de profondeur g > [ qui est
sur une méme double diagonale que I’anneau A,(xp) pris dans une colonne
d’indice assez grand (supérieur a [ —p). Cet anneau A,(xp) est non dégénéré
(lemme 1.17).

ii) Si le tableau du point critique est non récurrent, une infinité d’anneaux
A,(x) ont une orbite qui ne rencontre qu’'un nombre fini borné d’anneaux
critiques ou semi-critiques avant d’atteindre A,(xp). D’abord, sauf dans la
colonne 0, T(xp) ne contient aucune piece critique au-dela d’une certaine
profondeur k. Ensuite, dans 7(x) (tableau récurrent non persistant, avec
liminf 7 =1 € ]p, 00[), la double ligne p,p+1 coupe une infinité de colonnes
suivant deux pieces critiques. En descendant les doubles diagonales (vers le
Sud-Ouest) a partir de ces intersections, on croise au plus k — p 4+ 2 anneaux
critiques ou semi-critiques. En effet, la propriété T2) du lemme 1.18 montre
que toute diagonale de T'(x) contient, en dehors de la colonne 0, au plus une
piece critique a une profondeur supérieure a k. Les intersections des doubles
diagonales ci-dessus avec la colonne O de T'(x) fournissent ainsi, dans le bout
de x, une suite d’anneaux dont les modules sont comparables au module de

A/)(XO) . D

LEMME 1.27. Si le tableau de x est récurrent persistant, le point
critique xo est infiniment bagué par U. De plus, si la somme des modules
des anneaux du bout critique est infinie, il en est de méme pour le bout de
x et I'impression Imp(x) est réduite au point x.

Preyve.  On montre tout d’abord que le point critique est infiniment bagué.

Soit A,,(x) la suite des anneaux baguant x. Comme 7(n) tend vers 1’infini,
on peut, quitte a extraire une sous-suite, supposer que la suite 7(n; + 1) est
croissante. D’autre part, les anneaux A, (x) et Arn+1)—1(x0) proviennent d’une
méme double diagonale donc, d’aprés le lemme 1.17, Arn+1—1(xp) est non
dégénéré. Par suite, le point critique est infiniment bagué.
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On montre a présent que le bout de x contient une copie conforme de
chaque anneau du bout critique et que ces copies sont disjointes. Ceci entraine
que, si la somme des modules est infinie pour le bout critique, elle 1’est aussi
pour le bout de x.

Soit p la profondeur critique maximale dans la colonne O de T(x). Pour
i < p, I’anneau A;(x) coincide avec A;(xg). Pour i > p, on regarde dans 7'(x)
la premicre piece critique qu’on rencontre apres la colonne O sur la ligne i+1.
Si (i+1,j), j > 0, sont les coordonnées de ce terme, le lemme 1.24 (appliqué
a la ligne i+ 1 et a la diagonale D issue de (i + 1,0)) montre que 1’anneau
Aiyj(x) est conforme a A;(xo). Comme, par construction, j croit avec i (au
sens large), les copies conformes qu’on obtient sont disjointes. [

La proposition ci-dessous résume les trois lemmes précédents.

PROPOSITION 1.28. Soit x un point de K(f) et I un graphe admissible
qui bague le point critique xy et bague infiniment le point x. Pour que
I’impression Imp(x) soit réduite au point x, il suffit que l'une des conditions
suivantes soit remplie:

e T(x) est non récurrent ou récurrent non persistant;
e T(x) est récurrent persistant mais T(xy) ne [’est pas.

De plus, des que T(x) est récurrent persistant, le point critique xy est infiniment
bagué par 1 .

Les lemmes 1.30, 1.36 et 1.37 du paragraphe suivant reglent le cas ou
T(xg) est récurrent persistant, le point xy étant infiniment bagué par I'.

1.6 CAS D’UN TABLEAU CRITIQUE RECURRENT PERSISTANT

Dans toute cette partie, on suppose que I est un graphe admissible qui
bague infiniment le point critique X.

DEFINITION 1.29. On dit que le tableau critique T(xg) est périodique
s’il contient une colonne, autre que la colonne 0, enticrement formée de
piéces critiques. Les indices de ces colonnes totalement critiques sont alors
les multiples d’un entier k qu’on appelle période de T(xy). En fait, le tableau
T(xp) est périodique de période k si et seulement si le bout du point critique xg
est périodique de période k.

P
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LEMME 1.30. Si le tableau T(xo) du point critique est récurrent persistant
mais non périodigue, la somme des modules des anneaux du bout critique est

infinie.

Le probléme des anneaux critiques est qu’ils ont un module inférieur de
moitié a celui de leur image. Afin de compenser cette perte, on va trouver, pour
“chaque” anneau non dégénéré A,(xp), deux anneaux distincts de profondeur
plus grande, A;(xo) et Aj(xo), i,j > p, qui revétent doublement A,(xo) par un
itéré de f.

DEFINITION 1.31. On dira qu’un anneau A;(xp) est le fils d'un anneau
Ay(xo), p<i,sif =P induit un revétement double non ramifié de A;(xy) sur
Ap(xp). L'anneau A,(xp) sera donc le pére de A;(xp). On note que, si le pere
existe, 1l est unique.

Un anneau (critique) A;(xp) sera dit bon si, dans la double ligne i,i 41
qui le porte, il n’y a aucun anneau semi-critique. On verra que cette qualité
est héréditaire et qu’un bon anneau a toujours deux bons fils.

La démonstration du lemme 1.30 repose sur les quatre affirmations ci-
dessous.

AFFIRMATION 1.32.  Tout anneau (critique) a au moins un fils.

Preuve. Etant donné un anneau critique A,(xp), on considere la premiere
piece critique qu’on rencontre dans T(xg) sur la ligne p+1 aprés la colonne 0
(elle existe bien car T(xg) est récurrent). Si on note (p+1,i—p) les coordonnées
de ce terme, le lemme 1.24 montre que 1’anneau A,(xo) est une copie conforme
de A;_, (f(xo)), de sorte que A;(xp) est un fils de A,(x). [

AFFIRMATION 1.33.  Si un anneau est fils unique, il est bon.

Preuve. On suppose que A;(xp) est le fils de A,(xp) mais n’est pas bon.
Le tableau T(xy) contient alors un anneau semi-critique de profondeur i,
Ai(f/(x0)). Celui-ci se trouve nécessairement dans une colonne d’indice
J 2 i—p car la double diagonale liant le fils au pére est formée de pieces non
critiques entre la colonne O et la colonne i—p qui porte A, (ff“p(xo)) = A,(xp),
ces deux colonnes n’étant pas considérées. La regle T3) du lemme 1.18 fournit
alors un anneau semi-critique de profondeur p dans la colonne J+p et, entre
ces deux positions semi-critiques, les anneaux portés par la double diagonale
de A;(f/(xo)) sont non-critiques.
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Soit (p+1,k) les coordonnées de la premiere piéce critique rencontrée sur
la ligne p + 1 apres la colonne j+ p. L’anneau A, (f*(x0)) est critique et la
double diagonale qu’il détermine dans 7'(xg) est formée de pieces non critiques
au moins jusqu’a la colonne j. Sur cette double diagonale, le premier anneau
critique ou semi-critique rencontré se trouve a une profondeur /. Si cet anneau
est critique, c’est un fils de A,(xo) différent de A;(xp) car [ > i. Si c’est un
anneau semi-critique, la propriété T3) montre que I’anneau A;_;(f(xp)) (dans
la colonne 1) est conforme a un anneau semi-critique de profondeur p, a
savoir A, (fl_P(xo)). On note alors A, (f’”(xo)) le premier anneau critique de
profondeur p qu’on trouve a droite de A, (fl—p(xo)). D’apres le lemme 1.24,
cet anneau est I’1mage conforme de A4, (f(xo)) et Ap1m(xp) est donc un
fils de A,(xp), a nouveau différent de A;(xo) car p +m > 1. ]

AFFIRMATION 1.34.  Si un anneau est bon, il a au moins deux fils.

Preuve. Soit A,(xp) un anneau et A;(xo) un de ses fils (affirmation 1.32).
La double diagonale qui joint A;(xp) a son pere A, (fi“p(xo)) = Ap(xp) n’est
pas critique entre les colonnes 1 et i—p—1. Par ailleurs, comme la colonne i—p
n’est pas totalement critique (car T(xg) n’est pas périodique), elle porte un
anneau semi-critique de profondeur finie k > p. D’apres la propriété T3),
hors de la colonne 0, les seules positions critiques de profondeur > p sur la
double diagonale qui porte cet anneau ont pour coordonnées

(k—ali=phg+DG-p),  0q<—L.

En particulier, comme A,(xp) est bon, kK — p ne peut &tre un multiple entier
de i —p, sans quoi 'anneau A, (f**"~?(xy)) serait semi-critique. Cet anneau
A, (fk+i—2” (xo)) est donc non-critique et le lemme 1.24 assure que le premier
anneau critique de profondeur p situé plus a droite, sur une colonne d’indice
J > k+1i—2p, est I'image conforme de A; , (f(xo)). L’anneau A;;,(xg) est
donc un second fils de A,(xp). [

AFFIRMATION 1.35. Si un pere est bon, ses fils le sont aussi.

Preuve. En effet, si un anneau A,(xp) a un fils A;(xo) qui n’est pas bon, il
existe un anneau semi-critique de profondeur i. La propriété T3) permet alors
directement de trouver un anneau semi-critique de profondeur p, de sorte que
A,(xg) n’est pas bon. [

Preuve du lemme 1.30. On va montrer que, pour tout anneau critique
non dégénéré A,(xo), la somme des modules des descendants de A,(xp) est
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infinie. Pour cela, on note G,, n > 0, I’ensemble des descendants de A,(xo)
a la n-ieme génération (G, est formé des fils, G, des petits-fils...). Comme
tout anneau a un fils et au plus un pere, les ensembles G, sont non vides
et disjoints. Par ailleurs, les affirmations démontrées plus haut assurent que
chaque ensemble G, a au moins 2"~! éléments. En effet, les éléments de
G, sont les descendants des éléments de G, a la (n — 1)-ieme génération. Si
G; a au moins deux éléments, la récurrence donne 1’estimation. Si G; n’a
qu'un élément, ce fils unique est bon (affirmation 1.33) et a donc deux fils
(affirmation 1.34), lesquels sont bons (affirmation 1.35) et ainsi de suite.
D’autre part, si A € G,, le module de A vaut % modA,(xp). La somme

des modules des descendants de A,(xg) est donc infinie. []

LEMME 1.36. Si le tableau T(xg) du point critique est périodique, de
période k, l'application f*: Ppii(xo) — Pi(xo) est a allure quadratique pour
un certain entier [. L'impression Imp(xo) du point critique est alors I’ensemble
de Julia rempli de f*|p,, ) et est connexe.

Preuve. Entre la colonne O et la colonne k, la profondeur des positions
critiques est bornée par un entier i. Si A;(xo) est un anneau non dégénéré de
profondeur [ > i+ k, la piece Pi(xp) contient P;y;(xg), donc aussi Prii(x0),
et I’application fk‘P[+k(_\-0)Z Pryi(xo) — Pi(xp) est de degré 2, donc a allure
quadratique.

D’autre part, pour tout j > 0, les pieces du bout de f¥(xy) sont celles de la
colonne kj de T(xp), c’est-a-dire les pieces critiques. Par suite, f¥(xp) € P(xp)
pour tout j, ce qui montre que I’ensemble de Julia rempli associé a f* est
connexe. Enfin, cet ensemble de Julia rempli est I'intersection des préimages
Fu (P,(xo)) qui sont contenues dans P;(xp). C’est donc I'intersection sur i
des Pii(xo), c’est-a-dire I'impression Imp(xy) du point critique. []

Pour compléter la démonstration du théoréme 1.10, il reste i établir le
résultat ci-dessous.

LEMME 1.37. On suppose toujours que T(xy) est périodique de période k.
St un point x tombe par itération dans 'impression Imp(xo) du point critique,
son impression Imp(x) est une préimage conforme de Imp(xy). Sinon, et si x
est infiniment bagué par T, I'impression Imp(x) est réduite au point x.

Preuve.  Si f"(x) est dans Imp(xp) = [ Pi(xo), la colonne n de T(x) est
i>0
entierement critique. De plus, si n est le plus petit entier tel que f"(x) soit
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dans Imp(xp), les pieces critiques situées sur les colonnes 0,...,n — 1 de
T'(x) ont une profondeur bornée par un entier /. Par suite, pour tout i > /[,
I’application f” induit un homéomorphisme conforme de P;i,(x) sur P;(xp),
donc un homéomorphisme de Imp(x) sur Imp(xp).

On suppose a présent que l'orbite de x évite Imp(xp), c’est-a-dire
qu’aucune colonne de 7T(x) n’est enticrement critique. On va montrer que, Ssi
T(x) est récurrent, il est non persistant. Il suffit pour cela de construire une
suite n; sur laquelle 7 est bornée.

Dans le tableau T'(xp), entre les colonnes O et k, les positions critiques ont
une profondeur majorée par [. Dans 7(x), on regarde la colonne de plus petit
indice j ou I'on trouve des positions critiques a une profondeur strictement
supérieure a / et on note p la profondeur de la derniere position critique sur
cette colonne. L’anneau A, (fj(x)) est donc semi-critique. La propriété T3)
assure alors que la diagonale issue de la position (p+j+ 1,0) dans 7T(x) ne
contient aucune piece critique a une profondeur strictement supérieure a [+ 1.
Ainsi, T(p+j+ 1) <1+ 1 et on pose ny = p+j+ 1. On continue en
considérant la colonne de plus petit indice qui contient des positions critiques
de profondeur strictement supérieure a p. On construit ainsi une suite n; sur
laquelle 7 reste bornée par [+ 1. [

82 LA PRATIQUE

2.1 UN THEOREME DE CONNEXITE LOCALE

On s’intéresse dans la suite aux polyndémes de degré d + 1, d > 2, dont
I’un des points fixes dans C est un point critique de multiplicité d— 1. Un tel
polynéme est conjugué, par une transformation affine de C, a un polynéme
de la forme

d—+2
d

ou a désigne le point fixe critique de multiplicité d — 1. Le point —a est
alors I’unique autre point critique et sera appelé (par contraste) point critique
libre.

Le point a est un point fixe super-attractif. Son bassin d’attraction est

*) fo=a+(x+—"a)c-a, xeC,

I’ouvert
B(a) = {x ceC| f'"(x) —— a}

n— oo

d
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et son bassin immédiat, noté B(a), est la composante connexe de B(a) qui
contient a. Le but de cette partie est de démontrer le théoréme suivant:

THEOREME 2.1. Le bord du bassin immédiat B(a) est localement connexe.
En fait, c’est une courbe de Jordan.

REMARQUE 2.2. Le cas ol d =2 a été considéré par D. Faught dans sa
these [Fa].

La démonstration du théoréme, qu’on expose dans la suite, distingue deux
cas.

Si le point critique libre —a est dans B(a) ou dans le bassin de I’infini

B(co) = {x ceC| f'(x) — oo} |
le polyndme f est hyperbolique. La preuve s’appuie alors sur des arguments
tres classiques qu’on explique brievement dans la partie 2.3.

Dans la suite, on considere donc un polynéome f de la forme (x) pour
lequel —a n’est ni dans B(a), ni dans B(co). La démonstration se déroule
en trois étapes. On donne d’abord une premiere description de la dynamique
du polyndme f fondée sur des résultats classiques [M1]. On exploite ensuite
cette description pour trouver un graphe admissible auquel on puisse appliquer
le théoreme 1.10. Si le bout critique n’est pas périodique, chaque impression
est réduite a un point et il suffit alors de voir que 1’adhérence de toute piece a
une intersection connexe avec le bord de B(a) pour établir la connexité locale.
Sinon, il reste une étape pour montrer que ’impression du point critique libre
rencontre 0B(a) en un seul point.

2.2 ETUDE RAPIDE DE LA DYNAMIQUE

On observe tout d’abord que, comme f~!(c0) = {oo}, le bassin d’attraction
B(oo) est connexe. Ensuite, le théoreme de Bottcher [B] donne le résultat
suivant (voir [M1, 17.3]):

PROPOSITION 2.3. Si —a est en dehors de B(a) (resp. de B(c0)), il
existe une représentation conforme ¢,: D — B(a) (resp. ¢: D — B(co)) qui
conjugue f a z v z% (resp. a z — z%F') et est unique a composition pres
dans D avec une rotation d’angle 2km/(d — 1) (resp. 2kn/d).
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De telles représentations, lorsqu’elles existent, induisent des coordonnées
polaires treés utiles sur B(a) et B(oco). On appelle ainsi:

e rayon d’angle 0 issu de a 1’ensemble

R(0) = {¢a(r ™), r € (0,11}
e rayon externe d’angle 6 1’ensemble

R(O) = {¢(re*™), r e [0,1[};
e équipotentielle de niveau v autour de a la courbe

E,() = {¢u(re®™), 0 e R/Z};
o ¢équipotentielle externe de niveau v la courbe

Ew) = {¢(re*™), 0 e R/Z} .

Les rayons sont des arcs sur lesquels la dynamique agit simplement:
f(Ra(Q)) = R,(dO) et f(R(Q)) = R((a’+ 1)9). De plus, les rayons d’angles
rationnels forment toujours des chemins d’acces a I’ensemble de Julia J(f) :

THEOREME 2.4 (Douady, Hubbard, Sullivan, Yoccoz).

a) Pour tout 0 € Q/Z, les rayons R,(0) et R(0) aboutissent chacun en un
point de U'ensemble de Julia, c’est-a-dire que les arcs r € [0, 1[— ¢, (r *™?)
et r e [0,1[— <b(rezi”9) ont chacun une limite dans J(f) lorsque r tend
vers 1. De plus, chacune de ces limites (ou points d’aboutissement) est un
point pré-périodique répulsif ou parabolique.

b) Tout point périodique répulsif ou parabolique de J(f) est le point
d’aboutissement d’au moins un rayon externe qui est périodique.

On rappelle ici qu'un point p-périodique x de f est parabolique si (") (x)
est une racine de 1’unité.

Esquisse de preuve. Pour une preuve complete, voir [M1, 18.1 et 18.2].

a) On traite le cas du rayon issu de a (Iautre est analogue). Comme 0
est rationnel, R,(f) est pré-périodique par f et, quitte a changer 6 en 'un de
ses multiples, on peut supposer que R,(f) est fixe par un itéré f*. On choisit
un point yo € R,(#) et on regarde la suite yi,...,y,,... de ses préimages
successives par fk sur R,(f). La distance hyperbolique dist,(y,, y,+1), dans
B(a) \ {a}, est égale a dist;(yo,y;). Comme la suite y, s’accumule sur
OB(a), la distance euclidienne dist.(y,,y,+1) tend vers 0. De plus, comme
F*Yps1) = yu, les valeurs d’adhérence de la suite y, sont des points fixes

h*z o
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par f* et sont donc en nombre fini. Par ailleurs, toute suite y; € R,(0) est a
distance hyperbolique bornée d’une suite extraite y,, et ses valeurs d’adhérence
sont donc aussi des points fixes de f¥. Comme I’accumulation du rayon est
connexe, elle est réduite a un point.

b) La preuve est plus difficile et on n’en donne qu’une idée trés succincte
pour un point k-périodique répulsif x. D’apres un théoréme classique de
G. Keenigs, x posseéde un voisinage U sur lequel f est analytiquement
conjuguée a ’application z — Az o A = (f¥)(x). On voit facilement que
chaque composante connexe V de U \ K(f) est simplement connexe et le
point délicat est de montrer qu’elle est périodique par f*, i.e. que (V) DV
pour un certain entier i. On vérifie ensuite que I’anneau V/f¥ obtenu en
quotientant V par la relation d’équivalence x ~ f¥(x), avec sa métrique
hyperbolique, a une géodésique fermée et celle-ci se releve alors en le rayon
externe cherché. [

Dans le bassin B(a), on a en outre le résultat suivant qui, compte tenu du
théoreme de Carathéodory [C], montre que le bord dB(a) est une courbe de
Jordan des qu’il est localement connexe :

LEMME 2.5. Si deux rayons issus de a (d’angles rationnels ou non)
aboutissent en un méme point de 0B(a), ils sont égaux.

Preuve. Sinon, les deux rayons forment, avec leur point d’aboutissement x,
une courbe de Jordan qui borde un ouvert connexe borné U. Comme QU est
inclus dans B(a) qui est compact et invariant par f, le principe du maximum
assure que la famille /", n > 0, est bornée sur U et donc normale. Pour
obtenir une contradiction, il suffit alors de montrer que U rencontre J(f).
Or, si ce n’est pas le cas, x est le seul point sur lequel peuvent s’accumuler
les rayons R,(0) contenus dans U et, par suite, tous ces rayons convergent
vers x. Les angles de ces rayons forment un intervalle de R/Z et, comme la
multiplication par deux est dilatante, on voit que tout rayon issu de a aboutit
en x, ce qui est absurde. [

2.3 LE CAS HYPERBOLIQUE

On suppose ici que —a se trouve soit dans B(a), soit dans B(co). On note
P(f) I’ensemble post-critique de f — i.e. l’adhérenci des orbites positives
de tous les points critiques de f — et on pose U = C \ P(f). Comme P(f)
contient au moins —a, a et oo, le revétement universel U de U est un disque
— sauf si a = 0, auquel cas I’ensemble de Julia est exactement le cercle
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unité puisque f(x) = x*! — et on désigne par 7 la projection U— U. Par
ailleurs, f~'(U) C U car f envoie P(f) dans lui-méme.

LEMME 2.6. Au voisinage de J(f), l’application f dilate exponentiellement
la métrique hyperbolique de U.

~

Preuve. On va construire une application holomorphe ¢g de U dans
7~ (f~1(U)) C U qui fait commuter le diagramme

U —2— == (f~1(U))

ﬂ y

Uu——- iU
I

et a un point fixe attractif. Le lemme découle alors du fait que, d’apres le
lemme de Schwarz, g contracte exponentiellement la métrique hyperbolique
du disque U sur tout compact de U.

Pour trouver g, on note d’abord que J(f) contient au moins un point fixe
répulsif, par exemple le point d’aboutissement y, du rayon R,(0) (celui-ci n’est
pas parabolique car il n’est pas dans P(f)). D autre part, f: f~(U) — U est
une application holomorphe propre sans points critiques, donc un revétement.
On obtient g en relevant 7: U — U & ce revétement puis a 7~ (f~'(U)) en
une application fixant une préimage de yy dans u. O

On suppose maintenant que —a est dans B(co). Si ¢,: D — B(a) est
une représentation conforme fournie par la proposition 2.3, on regarde les
applications

Wi RIZ— C, 1 3(t) = ¢a((1/2)V ™) .
LEMME 2.7. La suite v, converge uniformément vers une application
surjective de R/Z dans OB(a). Par suite, OB(a) est localement connexe.

Preuve. Pour ng assez grand, I’image de <, est dans le voisinage de
J(f) ou f dilate la métrique hyperbolique de U. On note alors A > 1 la
constante de dilatation de la métrique et on pose

C = sup{disty (Ya, (), Yuo+1()), t € R/Z} .

Le fait que f envoie chaque rayon dans B(a) sur un autre rayon assure que,
pour tout n > ng et tout r € R/Z,
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disty (a(®), Yas1() < CA°7",

ce qui entraine la convergence uniforme voulue.  []

Si maintenant —a est dans B(a), alors f~'(B(a)) = B(a). Il en découle
’égalité OB(a) = J(f) = OB(c0). En effet, tout point x qui n’est pas dans
B(a) a un voisinage V disjoint de B(a). Par suite, toutes ses images it€rées
(V) évitent B(a), ce qui montre que la famille {f"} est normale sur V,
donc que x n’appartient pas a J(f). On applique alors a une représentation de
Bottcher ¢: D — B(co) le méme raisonnement que plus haut pour montrer
que OB(a) est une image continue du cercle.

Il reste a voir que OB(a) est bien une courbe de Jordan. On distingue
deux cas :

Si —a est dans B(oo), la représentation conforme ¢,: D — B(a) est bien
définie et le résultat découle alors du lemme 2.5.

Si —a est dans B(a), en conjuguant f par une transformation de Maebius
® qui échange a et oo, on obtient un polyndme g qui possede un point fixe
super-attractif ®(oco) et dont le bassin immédiat (P(B(co))) ne contient pas
d’autres points critiques. Dans ce cas on a bien une représentation conforme
du bassin immédiat a laquelle on peut alors appliquer le lemme 2.5.

2.4 CONSTRUCTION DE GRAPHES ADMISSIBLES

On suppose désormais que le point critique libre —a n’est ni dans B(a)
ni dans B(co) et on regarde le polyndme f comme une application a allure
rationnelle de X’ dans X ou

X=C\ (¢.((1/2D) Us((1/2D)) et X' =f"'X).

FIGURE |
Le graphe T'(0) avec, en gris, le bassin immédiat B(a) privé de (;’)(,((1/2)D)
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Pour construire un graphe admissible, on observe d’abord que, pour tout
[>1, I'angle 6 = 1/(d’ — 1) est, modulo 1, [-périodique par multiplication
par d. D apres le théoreme 2.4-a), le rayon R,(#) converge donc vers un point
périodique x répulsif ou parabolique. En prenant / assez grand, on s’assure
d’une part que ['orbite positive du point critique —a est disjointe de celle
de x et d’autre part que x est répulsif (en effet, f possede au plus une orbite
périodique parabolique car tout orbite de ce type attire un point critique). Le
théoreme 2.4-b) fournit alors un rayon externe périodique R(7) qui aboutit
en x. Avec ces rayons, on forme”) le graphe admissible suivant:

I'0) =0xU <X N (U R.(d'0) UR((d + 1)%7))) .
i>0
Sur le cercle identifié a [0,1]/(0 ~ 1), les angles d'0, 0 < i < [—1,
sont rangés en ordre croissant. On va maintenant vérifier que le graphe I'(9)
satisfait les hypotheses du théoreme 1.10.

On distingue deux types de picces de profondeur O découpées par I'(6),
selon que leur bord est formé, en dehors de 09X, de quatre rayons — deux dans
B(a), deux dans B(oco) — ou simplement de deux rayons externes. Comme
on s’intéresse surtout aux pieces du premier type, on appellera losange tout
ouvert de C dont la frontiere est I’adhérence d’exactement quatre rayons
d’angles rationnels dont deux sont dans B(a) et les deux autres dans B(co).
Les propriétés suivantes sont immédiates :

1) tout losange rencontre B(a) \ {a} suivant une partie stricte;

2) si U et V sont deux losanges tels que U NV N B(a) = {a}, alors
UNnvV={a,o};

3) l'union de deux losanges qui s’intersectent est soit un losange, soit
C \ {a,o0};

4) si U et V sont deux losanges tels que f(QU) = 0V, f(U) rencontre
V N B(a) et si U intersecte B(a) dans un secteur angulaire d’ouverture

strictement inférieure a 1/d (i.e. si 6; < 6, sont les arguments des rayons
de OU N B(a) alors 6, —6; < 1/d) , alors UN B(a) C f~1(V).

Pour le point 4), il suffit de voir que U N B(a) ne coupe pas de préimages du
bord de V. Ceci découle du fait que I’ouverture angulaire est trop petite pour
intersecter f~'(AV) N B(a), puisque OU est déja dans f~1(OV). Par suite, f
envoie U N B(a) dans V N B(a), d’ou I’affirmation.

") Souvent, par abus de langage, on dira qu’un rayon fait partie de ’adhérence ou du bord
d’une piece si cet ensemble contient au moins deux points du rayon. D’autre part, par extension,
on appellera encore rayon toute préimage itérée d’un rayon de B(a).
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On note T';(0) le graphe f! (1"(9)). Les rayons de B(a) qui font partie de
T',(0)\T'(#) ont pour angles les d'60+(j/d), 0 <i<I-1,1<j<d—1, qui
sont tous dans I’intervalle du cercle contenant 0 et délimité par 6 + (1/d) et
f/d (voir la figure 2). On se donne d’autre part un losange U(f) qui contient
R.(0)\ {a} et est bordé par R,(0 + (1/d)), R.(8/d) et deux rayons externes
faisant partie de I'1(0).

0+ 1/d
I—1p — ﬁ
d 9_9\/d+1/d d9+1/d\ .
dob
0 - 0/d
d=19+1/d
FIGURE 2

Le cas d =4, [ =3 vu dans D via ¢, avec, en pointillés, B(a) N T(0),
en continu, B(a) N (I'1(6) \ I(0)) et, en gris, U(8) N B(a)

LEMME 2.8. Tout point de J(f)N (U(@)\F1(9)> est bagué par 1(0) a la
profondeur 0.

Preuve. Lintersection U(0) N X', qui est une union de piéces de pro-
fondeur 1, est relativement compacte dans la piece de profondeur O qui
rencontre R,(0) et qu'on note Py (voir la figure 2). En effet, Py est la trace
sur X d’un losange 130 bordé dans B(a) par R,(6) et R,(8/d+1/d). Comme
1>0+1/d>6/d+1/d et 0<0/d <8, 'intersection U(Q)H(C\ﬁo)ﬂB(a)
est réduite & a. Par suite, U(9) et C \130 ne se touchent qu’'en a — pro-
priété 2) des losanges. Ainsi, U@ NX' C Py. [

LEMME 2.9. Soit 0 = 1/(d' —1) et ¢/ =1/d" —1) avec I' > I+ 1 et

[ assez grand. Tout point de OB(a) est bagué a une profondeur bornée par
l'un des graphes T(0) ou T'(6").

Preuve. On remarque tout d’abord que

((UO\TI®) U (UE)\TIEY)) N X' = (UE) UUE)) N X'
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car les graphes I'j(f) et I';(6') sont disjoints dans X’. Par suite, il suffit

de montrer qu’il existe un entier n > 0 tel que J f_i(U(H) U U(@’))
0<i<n

contienne 0B(a).

L’ouvert U(#) U U(0") est un losange que 1’on note V,, les rayons de
B(a) inclus dans 0V, sont d’angles n =0"+1/d, ( =6/d. On note n le
plus petit entier tel que n/d" < (, on va construire, pour 0 < m < n, un
ouvert V,, ayant les propriétés suivantes:

e V,NOB(a) estinclus dans |J f~i(Vy);

0<i<m

e V,, pour m < n, est un losange qui contient R,(1/d™) et est bordé

dans B(a) par R,(1/d™) et Ry(C):

e V,=C\{a}.

I existe un losange V| contenant R,(1/d) et bordé dans B(a) par R,(n/d),
R,(¢/d + 1/d), dont tout le bord est inclus dans f~!1(OVy). Alors, d’aprés
la propriété 4), Vi N B(a) C f~1(Vy). Comme (/d + 1/d > n, les losanges
Vi et Vy s’intersectent et V; = VU V| est un losange ayant les propriétés

demandées. On construit de méme un losange V/ pour tout m < n et on
pose V,, =V UV,_;. O

¢/d+1/d

Vo

FIGURE 3

Illustration de la démonstration du lemme 2.9

REMARQUES.

a) Toutes les constructions précédentes et en particulier les lemmes 2.8
et 2.9 restent évidemment valables si on prend des graphes d’angle opposé
i.e. d’angle 1 — @ avec 0 toujours de la forme 1/(d' — 1).

b) La profondeur a laquelle on parvient a baguer les points de 0B(a) est
bornée indépendamment du point considéré, mais croit avec [ et /’. Ce fait est
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insignifiant puisque I’on obtient finalement, d’aprés le lemme 1.12, que tout
point de 9B(a) est infiniment bagué par un graphe I'(f) avec ¢ = 1/ —1)
et [ assez grand.

D’aprés la remarque b) précédente, il reste & baguer le point critique —a
(qui se trouve dans K(f)) et conclure par le théoréme 1.10. On a le lemme
suivant :

LEMME 2.10. Il existe lp € N et 6 € {£1} dépendant uniquement de

a tels que pour tout 1 > ly, le point critique libre —a est bagué a la
profondeur 0 ou 1 par T(60) ou O est de la forme 1/(d' —1).

On assimile dans cet énoncé —6@ et 1 — 0.

Preuve. Pour d > 2, et [ assez grand, ’ensemble U(#) contient tous les
rayons R,(1), t € [1/2,1] et U(1 — ) tous les rayons R,(t), t € [0,1/2]. De
ce fait, U()UU(1 —6) contient B(a)\ {a}; c’est donc C\ {a} en vertu des
propriétés 1) et 3) des losanges. De plus, comme les graphes sont admissibles
(on prend [y grand dans ce but), —a n’est sur aucun graphe de profondeur 1.
Ceci résout le cas d > 2.

Pour d = 2, 'ouvert U(0) U U(1 — 0) ne recouvre plus B(a). Néanmoins,
pour tout [ > —loge/logd ou € est un rationnel petit, U(#) contient tous les
rayons R,(t), t € [1/2+¢,1] et U(1—0) tous les rayons R,(r), t € [0,1/2—¢].
On suppose donc désormais que le point critique —a est dans un losange V
bordé par R,(1/2+¢), R,(1/2 —¢€) et contenant R,(1/2). Pour voir que —a
est bagué a la profondeur 1, comme a priori il se peut que V contienne
une partie d’une préimage de B(a), on va montrer que la valeur critique
f(—a) est baguée a la profondeur O et plus précisément qu’elle se trouve dans
C\Vcu®@uu( —6).

On suppose donc que f(—a) est dans V, qui est un disque. Comme f
est de degré 3 et que —a est simple, f~'(V) est formé de deux disques et
ceux-ci ne touchent pas f~'(9V). Or il y a deux losanges Vi, V, évidents

qui ont leur bord inclus dans f~!'(AV), contiennent respectivement R,(1/4),
R,(3/4) et vérifient

1 ¢ 3 ¢
wedeom @ neg
1 5 C oV, et Ra4:i:2 C oV,.
Par suite, les deux composantes de f~!(V) sont incluses dans ViuV, qui
contient donc —a et est disjoint de V. [
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En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de 0B(a), 'un des graphes I'(d), ou I'(1 — 6) bague infiniment x et bague le
point critique —a. Le théoréeme de Yoccoz 1.10 et le lemme 2.11 ci-dessous
assurent alors que 0B(a) est localement connexe en x ce qui achéve la preuve
du théoréeme 2.1, sauf dans la cas ou le bout de —a est périodique et si x
tombe dans Imp(—a) par itération. C’est ce cas qu’il reste a étudier dans la
partie suivante 2.5.

Pour trouver des voisinages connexes d’un point x de 9B(a), on va extraire
de chaque intersection P,(x) N OB(a) un voisinage connexe de x dans OB(a)

qui est de la forme () O, 7,7") avec 7,7 € Q/Z ou
ue]0,1]

O, 7,7") = {@u(r®™) | r € Ju, 11, t € 17,7'[} .

LEMME 2.11. Tout point x de OB(a) dont 'impression () P,(x) est ré-
n>0
duite a x posseéde un systeme fondamental de voisinages connexes dans OB(a).

Preuve. Toute piece de profondeur n rencontre B(a) suivant des secteurs
du type 0@~ d", 7,7") car son bord est formé, dans B(a), (de morceaux) de
rayons rationnels et de I’équipotentielle de niveau 2~'/¢" . Par ailleurs, comme
x appartient a P,(x)N0IB(a), il possede un voisinage dans P,(x) qui rencontre
B(a). Ce voisinage rencontre alors un secteur 0~V 7'y C P,(x) N B(a)
ou R,(7), R.,(7") font partie de OP,(x). Ainsi, I’intersection

Uo= [ Ou,7,7)CP,x)
u€10,1[
est un voisinage de x dans dB(a), compact et connexe (c’est une intersection
décroissante .de parties compactes connexes). Comme 1’intersection des pieces
P,(x) se réduit au point x, la suite U, constitue un systeme fondamental de
voisinages connexes de x dans OB(a). L]

2.5 CAS D’UN BOUT CRITIQUE PERIODIQUE

On consideére a présent le graphe I' parmi I'(6) et I'(1 — 6) qui bague
le point critique libre —a (a la profondeur 0 ou 1) et on suppose que
le bout de —a est k-périodique. D’apres le théoreme de Yoccoz 1.10,

’application f*: Pii(—a) — P,(—a) est & allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est I’'impression

Imp(—a) = () Pn(—a). Deux cas se présentent alors. Si B(a) n’intersecte
n>0

\
b

pas K, la connexité locale de 0B(a) découle encore une fois du théoréme de J‘



PUZZLES DE YOCCOZ 165

Yoccoz 1.10 et du lemme 2.11, car aucun point de OB(a) ne tombe dans K
par itération et toutes les impressions sont donc réduites a des singletons.
Sinon, on montre que OB(a) N K est formé d’au plus un point (lemme 2.13)
qui est un point fixe par f* noté (. Il en résulte que, si I'orbite d’un point
x € OB(a) passe dans K, la suite des parties P,(x) N 0B(a) forme, dans
OB(a), un systéme fondamental de voisinages de x puisque leur intersection
est réduite & une préimage itérée de IB(a)NK C {F}. Le lemme 2.11 permet
alors de conclure que OB(a) est localement connexe en x. Ce qui acheve la
preuve du théoreme 2.1.

Dorénavant, on suppose que KNAB(a) # & et dans la fin de cet article on
montre que OB(a) N K est formé d’au plus un point. Dans un premier temps,
on trouve un point répulsif ou parabolique dans K N dB(a) :

LEMME 2.12. 1l existe dans B(a) un rayon R,(n) qui est k-périodique
par f et aboutit en un point 3 € K N OB(a) — fixe par f*.

Preuve. On reprend les notations données juste avant le lemme 2.11.
On montre tout d’abord (par récurrence sur n) que, si une piece P, de
profondeur n rencontre B(a), Uintersection P, N B(a) est formée d’un seul
secteur du type Q(u,7,7’), ou l'intervalle ]7,7'[ du cercle a une longueur
strictement inférieure a 1/d""!.

Une piece Py de profondeur O a clairement cette propriété. D’autre part,
toute piece P,y; de profondeur n + 1 est contenue dans une piece P!, de
profondeur n et a pour image par f une (autre) piece P, de profondeur n.
Par hypothése de récurrence, P, N B(a) est du type Qun,7,,7,), avec
7! —1,| < 1/d"T!. Louvert Q(u,, 7, 7,) a donc d préimages dans B(a), qui
sont de la forme

i, ,
Q(u,7+2,7+3>, 0<i<d-1,
et |7/ — 7| < 1/d"™*. Lintersection P, N B(a) coincide alors
avec l'un de ces secteurs ouverts: elle en contient un tout entier car elle
est bordée par des rayons préimages de ceux qui bordent P, et elle ne peut
en contenir deux car deux tels secteurs different de 1/d alors que la piece

P, D P,y rencontre B(a) dans un secteur d’ouverture < 1/d (hypothése de
récurrence). On choisit alors 7, 7" pour que

1/d

ol u = u,

Pn—l—l M B(a) - Q(ua T, 7-/) .

Soit maintenant x un point de K N dB(a). S’il se trouve sur une préimage
I, du graphe I', ¢’est immédiatement le point d’aboutissement d’un rayon
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prépériodique de B(a). En prenant son image par un itéré convenable de f,
on obtient un rayon périodique qui converge vers un point 5 € KNOB(a) fixe
par f*. Si x n’est sur aucune préimage du graphe, la pice P,(x) rencontre
B(a) suivant un secteur de la forme Q2% 7,, 7)) avec |1, — 7!| < 1/d".
Les angles (7,), (7,) forment des suites adjacentes dont on note 7 la limite
commune. Comme x € K C P,(—a), nécessairement P,(x) = P,(—a) et, de
ce fait,

F4(Pusr(x) N B(@)) = Py(x) N B(a)

pour n assez grand. Par suite, d*n est dans Dintervalle ]7,,7.[ C R/Z, de
sorte que d*n = n. Le rayon d’angle 7 converge alors vers un point (3
(théoréme 2.4). Ce point 3 est fixe par f* et, comme il se trouve dans toutes
les piéces P,(—a), il est dans K N OB(a). [

LEMME 2.13. 1l existe deux rayons externes R((), R(("), d’angles (, ('
rationnels, qui aboutissent au point 3 et sont tels que la courbe de Jordan

R(OURCHUA{B} sépare K\ {B} de B(a)\ {B}.

Preuve. Dans la preuve du lemme 2.12, on a vu que P,(—a) N B(a) est
de la forme Q74" 7, 7!). Les rayons Ru(T,), R,(7!) convergent vers des
points y,, y, de OB(a) en lesquels aboutissent aussi des rayons externes
qui font partie de OP,(—a) et qu'on note respectivement R((,), R(()). La
suite ¢, (resp. () est alors croissante majorée (resp. décroissante minorée) et
converge donc vers un angle limite ¢ (resp. ¢’). De plus, comme f* est un
homéomorphisme local en les points y,, y, et que f*(P,i(—a)) = P,(—a)
pour n assez grand,

FY(RGus)) =RG), et fARC4) =R

Il en résulte que (d + l)kCn+k = (, (dans R/Z) et, par suite, que ( est
périodique de période divisant k. Les rayons R((), R(¢') convergent ainsi
vers des points y, ¥ qui sont fixes par f* et qui appartiennent & K — car
la partie des rayons R((), R({') située au-dela du potentiel -/
dans P,(—a).

D’autre part, le théoréme de redressement de A. Douady et J. H. Hubbard
[DH2, théoréeme 1] montre que f* est conjuguée a un polyndme quadratique
f.(2) = 7% +c¢ par un homéomorphisme ¢ d’un voisinage de K sur un voisinage
de I’ensemble de Julia rempli K. de f,. Les points (), o(y) et o(y’) sont
des points fixes de f. en lesquels aboutissent des arcs externes fixes par f.
— 4 savoir o(R,(n)), o(R(Q) et o(R()). Or un polyndme quadratique
posséde au plus deux points fixes parmi lesquels un seul — généralement

se trouve
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noté (3. — est I’aboutissement d’un arc externe fixe [P, théoreme A]. Par
suite, R(C), R(C') convergent nécessairement vers 3.

Finalement, R(()UR((') forme une courbe de Jordan qui sépare K \{3_} de
B(a)\ {B}. En effet, le losange V, bordé par Ru(1), Ra(t)), R(Gy) et R(G)
contient la piece P,(—a) par construction. Il contient donc K et, par suite,
au moins un point périodique répulsif p (différent de &) et un rayon externe
qui converge vers p, de sorte que ¢ # ¢’. Ainsi, la composante connexe U
de C\ (E(Q UE(C’)) qui contient p contient K \ {3} — car K ne peut
rencontrer la courbe R(¢) UR(¢") qu’en 3 et ce point ne disconnecte par K
[M, théoréme 6.10]. [
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