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PUZZLES DE YOCCOZ

POUR LES APPLICATIONS À ALLURE RATIONNELLE

par Pascale ROESCH

La dynamique d'une fraction rationnelle /: C C U {oo} —» C est de

nos jours bien comprise dans l'ensemble de Fatou F(f), défini comme le plus

grand ouvert de C sur lequel les applications itérées

n>0,
n fois

forment une famille normale (i.e. équicontinue). Un théorème de D. Sullivan [S]

assure en effet que chaque composante connexe U de F(f) est pré-périodique
et des résultats plus anciens de "linéarisation" permettent alors, dans la plupart
des cas, de modéliser la dynamique de / sur U. Si U contient par exemple

un unique point critique a de / et si celui-ci est fixe par /, un théorème de

L. Böttcher [B] fournit une représentation conforme du disque unité ouvert
D c C dans U qui conjugue f\u à l'application z ^ zd, où d est l'ordre de

la plus petite dérivée non nulle de / en a.
Hors de F(f), c'est-à-dire dans l'ensemble de Julia J(f) C \ F(f),

la construction de modèles comparables passe par une étude topologique.
Un théorème de C. Carathéodory [C] affirme en effet qu'une représentation
conforme de D sur un ouvert iQ C C se prolonge continûment au bord
si et seulement si la frontière de £1 est localement connexe. Appliqué à la
représentation de Böttcher <fi: D —> U, ce théorème montre que la dynamique
de / sur dU est semi-conjuguée à la multiplication par d sur le cercle si et
seulement si dU est localement connexe. Par ailleurs, dans le cas où / est

un polynôme et où U est la composante de F(f) qui contient l'infini — ce
dernier étant de plus le seul point critique de / dans U —, le bord de U
est en fait l'ensemble de Julia J(f) tout entier. La question de la connexité
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locale des ensembles de Julia est donc cruciale pour comprendre la dynamique
des fractions rationnelles, de même d'ailleurs que la question de la connexité
locale des ensembles limites est centrale dans l'étude des groupes kleiniens.
Le but de cet article est de présenter, dans un cadre élargi, la méthode des

puzzles introduite par J.-C. Yoccoz — à la suite des travaux de B. Branner et
J. H. Hubbard sur les polynômes cubiques [BH] — pour examiner ce problème
dans le contexte des polynômes quadratiques.

Pour être localement connexe, dU doit déjà contenir des compacts connexes
stricts non ponctuels. On ne sait pas toujours exhiber de telles parties, mais on

y parvient cependant dans de nombreux cas en trouvant des points de coupure
grâce à des résultats de A. Douady, J. H. Hubbard, D. Sullivan et J.-C. Yoccoz

qui montrent la convergence, lorsque r tend vers 1, des rayons paramétrés

re[0;l]i—y (j){r e2i7") où Q/Z,

et caractérisent leurs limites (voir le théorème 2.4). Une fois qu'on a obtenu
de tels continuums C C dU, on regarde leurs préimages itérées dans dU ; il
est légitime d'espérer que leur diamètre tend vers 0 pour la raison suivante:

d'après les travaux de P. Fatou [F] et G. Julia [J], J(f) est l'adhérence des

points périodiques répulsifs de / et le comportement de / sur dU C J(f est

donc a priori dilatant. En fait, cette dilatation n'est vraiment forte et uniforme

que si J(f) ne rencontre pas (ou éventuellement en un nombre fini de points)
l'ensemble post-critique P(f). Par définition, cet ensemble est l'adhérence des

orbites positives de tous les points critiques de / et le comportement de /
sur P(f) est donc plutôt contractant. Si J(f)C\P(f) est vide (resp. fini), on dit

que / est hyperbolique (resp. géométriquement finie) et la connexité locale est

bien établie [DH1, M3, TY] (voir la partie 2.3 pour un aperçu de la preuve).

Lorsque les phénomènes de contraction et de dilatation se mêlent dans

l'ensemble de Julia, le problème de la connexité locale est plus délicat et les

résultats obtenus en 1989 par J.-C. Yoccoz pour les polynômes quadratiques
constituent un progrès très important. L'ensemble de Julia d'un tel polynôme /
est connexe si et seulement si l'infini est le seul point critique dans la

composante non bornée U de F(f) et, comme on l'a dit plus haut, J(f)
coïncide avec dU. Yoccoz se donne alors un graphe T ç)(rD), où Td C D

est constitué d'un cercle centré en 0 et de plusieurs rayons formant un cycle

périodique par z ^ z2 et dont les images par la représentation de Böttcher
D — U convergent vers un même point fixe de /. L'adhérence de chaque

composante de C \ T a alors une intersection connexe (ou vide) avec J(f)
mais, sans hyperbolicité, on ne sait pas contrôler directement le diamètre de

ses préimages itérées. Pour montrer que ce diamètre tend vers 0, Yoccoz
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étudie le module des anneaux Pn\Pn+i, où Pn+\ C Pn et Pn, Pn+\ sont des

composantes connexes respectives de C\f~nÇT), C\/~(n+1)(r). Il établit alors

la connexité locale sous certaines hypothèses en montrant que la somme de

ces modules diverge. On peut trouver des exposés sur ce travail (non publié)
de J.-C. Yoccoz dans [H, M2].

Cet article se propose de présenter la méthode de Yoccoz dans un

contexte plus large que celui des polynômes quadratiques, afin de la rendre

directement applicable à des fractions rationnelles de degré plus élevé (voir par
exemple [R]). Le cadre est celui des applications à allure rationnelle. Étant

donné une telle application /, on dégage, dans la première partie, des conditions
suffisantes (théorème 1.10) portant sur un graphe T pour que les composantes

connexes du complémentaire des préimages itérées /~"(r), n > 1, qui
rencontrent J(f), aient un diamètre qui tende vers 0 avec n. L'exposé utilise
le langage des tableaux introduit par B. Branner et J. H. Hubbard dans [BH]
et s'inspire en partie de la thèse de D. Faught [Fa]. Au passage, on s'efforce
aussi d'unifier le traitement des divers types de récurrence qui apparaissent.

Dans la seconde partie, on montre comment appliquer en pratique cette
théorie pour établir un résultat concret (original) de connexité locale (théorème

2.1). Précisément, on montre que si un polynôme de degré d + l,
d > 2, a un point critique de multiplicité d — 1 qui est fixe, le bord du bassin
immédiat de ce point est une courbe de Jordan, de sorte que la dynamique y
est conjuguée à la multiplication par d sur le cercle.

§ 1 La théorie

1.1 Applications à allure rationnelle
DÉFINITION 1.1. Une application f'.X'^X est dite à allure rationnelle

si :

• X et X' sont des ouverts connexes de C à bords lisses, X contient
l'adhérence X' de X' et dX a un nombre fini de composantes connexes;

• / : X' —» A est une application holomorphe propre qui a un nombre fini
de points critiques et se prolonge en une application continue X' —» X.

Si X et X' sont simplement connexes, une application à allure rationnelle
/ : X' —» X est une application à allure polynomiale au sens de Douady-
Hubbard [DH2]. Une application à allure polynomiale qui est de degré deux
est dite à allure quadratique.
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Avant de donner l'exemple typique d'applications à allure rationnelle, on

rappelle qu'un point x est périodique par / s'il existe un entier p > 0 tel

que fp(x) x, où fp désigne le p-ième itéré de /. De plus, un tel point x
est

répulsif si |(fp)'{x)\ > 1

indifférent si |ifp)'(x)\ 1

attractif si \(fpY(x)\ G 10,1 [ et

super-attractif si (fp)'{x) 0

D'autre part, x est pré-périodique s'il existe un entier q tel que fq(x) soit

périodique. Enfin, un point critique de / est un point x où la dérivée f
s'annule. La multiplicité de x est le plus grand entier m > 0 tel que

fim\x) 0. Un point p -périodique super-attractif est donc un point fixe
et critique de fp.

Exemple 1.2. Soit /: C — C une fraction rationnelle et A(f) la réunion
des orbites positives de tous ses points périodiques (super-) attractifs. Si Uq

est un voisinage ouvert de A(f) dont le bord est lisse, ne porte aucun point
critique de /, et dont l'image f{Uf) est relativement compacte dans Uo, tous

les ouverts Un f~n(Uo), n> 0, sont du même type. Par suite, si on pose,

pour un entier n > 0 quelconque,

xc\n„,x'=r\x),
la restriction de / à X', f\x> : X' —» X, est une application à allure rationnelle.

De plus, pour n assez grand, Un contient tous les points critiques de / qui
sont attirés par A(f) de sorte que ceux-ci n'apparaissent pas comme points

critiques de f\x>.
Par exemple, pour f(z) z2 — 1. Le point critique 0 est périodique de

période 2 de sorte que pour r suffisamment petit, f2 envoie le disque D(0, r)
strictement à l'intérieur de lui-même. L'application / admet une branche

inverse définie sur C\{zER|z<— 1} à valeur dans le demi-plan x < 0.

On peut donc trouver un petit disque D' contenant —1 tel que f(D') soit

compris entre D(0, r) et f2(D(0, r)) strictement. Ainsi, D' contient /(£>(0, r))
et D contient f(D'). Par contre pour R grand f~l(D(0.R2)) est proche du

disque de rayon R, son d'adhérence est donc dans D(0,7?2). Ceci permet
de voir le polynôme / comme une application à allure rationnelle en posant

X D(0,R2) \ (f(D(0, r)) U f(D')) et X' =f~l(X). Dans cet exemple, illustré

par la figure 0, l'application f\x> n'a plus de points critiques.
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Figure 0

Le polynôme z2 — 1 présenté comme application à allure rationnelle

/: X' —>• X avec X' en noir et X en gris

En particulier, si /: C —> C est une fraction rationnelle hyperbolique, c'est-
à-dire dont chaque point critique est attiré par l'orbite d'un point périodique
(super-) attractif, l'application à allure rationnelle qu'on obtient par le procédé

général décrit ci-dessus (pour n grand) n'a aucun point critique. Dans la suite,

on regarde plus spécialement le cas où il reste un unique point critique :

Définition 1.3. Une application à allure rationnelle f:X'—^X est dite
simple si elle a au plus un point critique, lequel est simple, c'est-à-dire de

multiplicité 1.

DÉFINITION 1.4. L'ensemble de Julia rempli d'une application à allure
rationnelle (quelconque) /: X' — Z est l'ensemble K(f) des points x de X'
dont tous les itérés f\x) sont définis et restent dans X. Autrement dit,

n> 0

Remarque 1.5. L'ensemble de Julia rempli K(f) de f est compact car
il coïncide avec l'intersection des compacts f~n(X'), n > 0.

D'autre part, la famille {/"} est normale sur l'intérieur de K(f) car l'orbite
de tout point de K(f) évite l'ensemble X \ X' qui contient au moins trois
points. Par contre, près d'un point x de la frontière de K(f), la famille {/"}
n'est pas équicontinue : on peut trouver des points tendant vers x et des
entiers iq tendant vers l'infini tels que /,7'(x/) soit hors de X' et donc loin de

/"' (x) G K(f) pour tout i.
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1.2 Graphes et puzzles

Définition 1.6. Soit /: X' —» X une application à allure rationnelle

simple. On dit qu'un graphe Y (formé d'arêtes - arcs de C - et de sommets

- points de C) est admissible s'il vérifie les conditions suivantes:

• r est un graphe connexe fini inclus dans X et contenant dX ;

• T est stable au sens où f~1 (F) contient Y ni';
• l'orbite positive du point critique ne rencontre pas Y.

Des exemples de tels graphes seront construits par la suite.

Etant donné un graphe admissible Y pour f: X' X, on appelle
pièce de profondeur n, n > 0, toute composante connexe de l'ouvert
f~n(X\Y) f~n(X)\f~n(T). Le puzzle associé à (X',X,f,Y) est la collection
de toutes ces pièces.

Les pièces de profondeur n donnée sont ainsi des ouverts disjoints et tout
point x de f~nÇX \ F) se trouve dans une unique pièce de profondeur n que
l'on note Pn{x).

Le bord des pièces de profondeur 0 est contenu dans F. Pour n > 1, le

bord des pièces de profondeur n est contenu dans le graphe Yn où la suite

Yn, n > 0, est définie comme suit :

r0 r, n =rl(mx)udx',r„+1 =/-"(r,), «> 1.

Une pièce de profondeur n est donc aussi une composante connexe de

f~'\x) \r„.

LEMME 1.8. Soit Y un graphe admissible pour une application à allure
rationnelle f de X' dans X.

a) Toute pièce de profondeur n + 1 du puzzle associé à Y est incluse

dans une unique pièce de profondeur n.

b) Pour tout point x de /_(n+1)(X \ F), f induit une application de

Pn+l(x) sur Pn{f(x)) qui, selon que Pn+\{x) contient ou non l'éventuel point
critique de f, est soit un revêtement double ramifié, soit un homéomorphisme.

c) Toutes les pièces du puzzle sont simplement connexes.

Preuve, a) Cela provient de l'inclusion X' C X et de la stabilité de Y.

b) Comme les pièces de profondeur n sont les composantes connexes de

f~n(X \Y), chaque image f(Pn+i(x)) est contenue dans Pn (f(x)). De plus,

comme / est ouverte, le bord de f(Pn+1W) est inclus dans f(dPn+ i(x)), donc
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dans /(IVfi) — Y„. Ceci montre que l'application de Pn+\(x) dans Pn (/(x))
induite par / est propre et est donc un revêtement ramifié. Si P/2+i(x) ne

contient pas le point critique, cette application est un homéomorphisme ; sinon,

c'est un revêtement double ramifié car le point critique est simple.

c) Comme le graphe Y est connexe, les pièces de profondeur 0 sont

simplement connexes. On procède ensuite par récurrence. Si P est une pièce
de profondeur /? +1, son image f(P) est une pièce de profondeur n et est donc

simplement connexe. Comme / induit un revêtement ramifié de P sur f(P),
la formule de Riemann-Hurwitz montre que P est simplement connexe.

DÉFINITION 1.7. Si x E K(f) est un point dont l'orbite positive ne rencontre
pas r, il est contenu dans une suite infinie et décroissante de pièces. On appelle
bout de x cette suite

(P0(x)D Pi(x) D DD

et impression de x l'intersection de ces pièces

Imp(x) P| //.(a).
n> 0

Le lemme 1.8 montre que l'application / envoie naturellement le bout de

x sur celui de /(x) :

f((P0(X)D Plix) D (/(/Ma-)) Df(P2(x)) D • • •

{Po(f(x))DPi(f(x))D
En particulier, on dit qu'un bout est périodique par / s'il est égal à son image
par fk pour un k > 0.

1.3 Le théorème de Yoccoz

Définition 1.9. Étant donné un graphe admissible F pour une application
à allure rationnelle simple /, on dit qu'un point a de est bagué — à la
profondeur n — si la condition suivante est satisfaite:

Pn+i(x) C P„(x).
On dit que x est infiniment bagué par T s'il est bagué à une infinité de
profondeurs différentes.

Le théorème ci-dessous, dû à J.-C. Yoccoz, est un outil essentiel pour
étudier la connexité locale des ensembles de Julia (voir [H, M2]). Il fait
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l'objet de cette première partie et est démontré dans les paragraphes 1.4 à

1.6. Dans la seconde partie on en donne une application.

THÉORÈME 1.10 (Yoccoz). Soit f'.X' —§» X une application à allure
rationnelle ayant un unique point critique xo, lequel est simple, et soit x un

point de K(f). Etant donné un graphe admissible T qui bague xo et bague

infiniment x, on a Valternative suivante:

• si le bout du point critique xq n'est pas périodique, l'impression Imp(x)
est réduite au point x ;

• si le bout du point critique xq est périodique, de période k, l'application
fk : Pi+k(xo) Pi(xo) est à allure quadratique, pour un entier l assez

grand, et son ensemble de Julia rempli est l'impression Imp(xo) de xq. De

plus, selon que x tombe ou non dans Imp(xo) par itération, son impression
Imp(x) est soit une préimage conforme de Imp(xo), soit le seul point x.

Remarque 1.11. a) Les deux cas envisagés dans le théorème 1.10 se

présentent. Lorsque xo et f(xo) sont séparés par T, que /(xo) est périodique
alors que xq ne l'est pas, le bout du point critique n'est pas périodique. Par

contre lorsque x0 est périodique son bout est évidemment périodique.
b) Si l'impression d'un point x de K(f) est réduite à x, la suite des

pièces Pn(x) forme un système fondamental de voisinages de x. Ainsi, si

l'intersection de K(f) avec Pn(x) ou Pn(x) est connexe pour tout n assez

grand, l'ensemble K(f) est localement connexe en x.

Pour exploiter le théorème de Yoccoz, il faut donc d'abord construire des

graphes T qui soient admissibles pour /, et en particulier stables. Lorsque

/ est en fait définie sur X, la stabilité de T est équivalente à la condition

f(T) nicT, qui est un peu plus maniable.

Il faut ensuite que ces graphes baguent infiniment les points de K(f). Le

lemme suivant donne pour cela un critère bien utile.

LEMME 1.12. Soit K une partie de X1 contenant son image f(K). On

suppose qu'il existe un nombre fini de graphes admissibles r°,... et un

entier l tels que tout point de K soit bagué, à une profondeur inférieure à

l, par l'un des graphes P. Alors tout point de K est infiniment bagué par
l'un des P.

Preuve. Pour 0 < i < r, soit Ui l'ensemble des points bagués à une

profondeur inférieure à l par P. Par définition, U\ est la réunion des pièces
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PnJrX de profondeur n.+ 1 < / (définies par P) dont l'adhérence est incluse

dans une pièce Pln de profondeur n. Par hypothèse, la réunion des £/,- pour
0 < i < r recouvre K.

Si x est un point de K, son orbite (positive) reste dans K car K
contient f(K). Par suite, elle visite une infinité de fois l'un des £/z-, donc

aussi une infinité de fois l'une des pièces C £/;. Autrement dit, f11j(x)

est dans PJÎ+1 pour une infinité d'entiers nj. Comme chaque application f"j
est ouverte et envoie proprement les pièces P^+„.+1(x) et P'n+Jx) sur

et Pln respectivement, le fait que soit inclus dans Pln implique que

l'adhérence de Pln+n.+i(x) est contenue dans Pln+n.(x). Par conséquent, x est

bagué par P à toutes les profondeurs n + rij.

Les paragraphes suivants de cette première partie exposent la preuve du

théorème de Yoccoz 1.10. En voici auparavant un premier aperçu dans lequel

on introduit quelques notions utiles.

Dans le bout d'un point x, on prend deux pièces consécutives et on regarde
leur différence Az(x) Ez(x) \ Ëz+i(x). Si x est bagué à la profondeur
Az(x) est un anneau de C au sens où son complémentaire dans C a deux

composantes connexes dont une, au moins, n'est pas un point. L'anneau Az(x)

est alors (voir [A]) conformément équivalent à un unique anneau standard

Ar {z C j r < \z\ < 1}, r > 0

et possède un module qui vaut

log r
modAz(x) ——— G ]0, oo].

Z7T

Si dPi(x) touche dPj+i(x), on dira que Az(x) est un anneau dégénéré et on
lui attribuera un module nul. On dispose alors du critère suivant:

LEMME 1.13. Si la série des modules des anneaux Pj(x) \Pi+i(x) diverge,
Vimpression Imp(x) de x est réduite au point x.

Preuve. C'est une conséquence directe des deux résultats classiques
suivants que l'on trouvera par exemple dans [A] :

• si un anneau A contient une suite d'anneaux A/ disjoints et tous homotopes
à A, alors mod A > JAmodA; (inégalité de Grötzsch);

• si U est un disque conforme, si K C U est un compact connexe plein
(Le. tel que U\K soit connexe) et si le module de l'anneau A U\K
est infini, alors K est réduit à un point.
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La proposition qui suit (version triviale du théorème de Yoccoz) règle le

cas où le point critique xq n'est pas dans K(f), moyennant un rétrécissement
de X'. En outre elle donne une idée sur la manière dont on peut appliquer le
lemme ci-dessus et utiliser la dynamique pour étudier la série JLmodA/(x).

PROPOSITION 1.14. Soit f'.X' —^X une application à allure rationnelle

n'ayant aucun point critique et soit x un point de K(f). Si un graphe
admissible F bague x infiniment, l'impression Imp(x) est réduite au point x.

Preuve. Soit A l'ensemble des anneaux de la forme Po\P1, où P0,

Pi sont des pièces du puzzle de profondeurs respectives 0 et 1. Comme le

graphe F est fini, A est un ensemble fini. Par ailleurs, comme / n'a aucun

point critique, fl induit, pour tout i > 0, un homéomorphisme conforme de

l'anneau Af-(x) sur un anneau élément de A. Il en résulte d'une part qu'il
existe une infinité d'entiers i pour lesquels les images /'(Az-{x)) sont égales à

un même anneau A 6 A, d'autre part que ces anneaux A/(x) ont tous le même

module que A. Par suite, la série ]T\modA;(x) diverge et le lemme 1.13 en

tire la conclusion.

Cette preuve s'effondre évidemment dès que / a un point critique xo

dans K(f). Quand P/(x) contient xo, on peut seulement minorer le module
de A/(x) par (l/2)modA/_j (/(x)) (voir le lemme 1.17). La comparaison de

modA;(x) avec le module des anneaux de profondeur 0 dépend alors du

nombre d'images itérées de P,(x) qui contiennent x0 et, en fin de compte,
de la récurrence du point critique xq. Si celle-ci n'est pas trop forte, on peut
encore trouver une infinité d'anneaux A/(x) ayant un même module. Sinon,

une étude plus approfondie de la combinatoire est nécessaire.

1.4 Présentation des tableaux et de leurs propriétés

Soit T un graphe admissible pour une application à allure rationnelle

simple f'.X'-^X et x un point de K(f) dont l'orbite positive évite F.

DÉFINITION 1.15. Le tableau T{x) du point x est la matrice de pièces,

infinie vers la droite et le bas, dont la j-ième colonne, j > 0, donne

en descendant les éléments du bout de fJ(x). Autrement dit, l'élément de

la j-ième colonne et /-ième ligne (en comptant vers le bas) est la pièce

T(x)ij Pi{fKx)),ij>0.

Ainsi, pour tous I > l, j>0,l'inclusion Pi(fJ(x)) -> /', li/'l.v))
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donne une flèche verticale montante sur T(x), tandis que l'application

Pi(fj(x)) P/_i (fj+l(x)) induite par / fournit une flèche diagonale montante.

En outre, toutes ces flèches commutent.

Poix)

'î f/
Po(f(x))

' T f/
Po{f2(x))

iT ff
Plix)

i T

o
f/

Pi {m)
'T

O

f/
Pl(fix))

r|
0
ff

Plix) 0 Plifix)) o Piifix)) 0

P,<x)

n
o
s/

Pi {m)
*T

0
f/

Pi ifai)
i î

ö
ff

Pi+lix) Ö pi+i(m) r) ^+1 (fix)) Ö

Les diagonales sud-ouest—nord-est (le long desquelles agit la dynamique /)
seront appelées diagonales du tableau T{x). On appellera aussi double

diagonale toute paire de diagonales consécutives.

DÉFINITION 1.16. On appelle anneau de profondeur i du tableau T(x)
tout anneau, éventuellement dégénéré, de la forme A/(y) Pi(y)\Pijr i(y), où

y est dans l'orbite positive de x.
Un tel anneau est dit critique (respectivement non-critique, respectivement

semi-critique) si le point critique xq se trouve dans Pl+ \ (y) (respectivement
hors de Pfy), respectivement dans Pi(y)\Pijr i(y)).

LEMME 1.17.

1) Le caractère dégénéré ou non des anneaux du tableau est constant le

long des doubles diagonales.

2) L'image par f de l'anneau A/(y) P/(y) \P/+i(y), i > 0, est l'anneau
si et seulement si l'anneau Afy) n'est pas semi-critique.

Si A/(y) est critique (resp. non-critique), f induit un revêtement double

non ramifié (resp. un homéomorphisme) de Afy) sur A;_i(/(y)) et
modA/_! (/(y)) 2 mod A, 00 (resp. m mod A/(y)).

Dans le cas où A/(y) est semi-critique, bien que A/_i(/(y)) ne soit pas
l'image /(A/(y)), on a la comparaison

modA/_i (f(y)) < 2 mod A/(y).
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Preuve. 1) Si Afy) est dégénéré, A;_i(/(y)) l'est aussi. En effet, comme

/ induit une application propre de P;(y) sur P,_i (/(y)), un point commun à

ôP/ty) et 9P/+1(y) va sur un point commun à dPL-i (f(y)) et <9P/(/(y)).

De plus, comme / est ouverte, le bord de Pi(f(y)) f(Pi+\(y)) est

entièrement inclus dans P;_i (/'(y)) /(Pj(y))- Par suite, si Ai (y) n'est pas

dégénéré, A/_i (/'(>')) ne l'est pas non plus.

2) D'après le lemme 1.8, pour tout entier k > 0, / induit une application
/*• P*Cy) — Pk— î (/"(y)) Qui est soit un homéomorphisme soit un revêtement

double ramifié.

i) Si x0 est dans P{+i(j), les applications f et fi+\ sont des revêtements

doubles ramifiés en xq. Par suite, f~l (/(P/+i(>0))fiP/(j) P;+i(y) et l'anneau

image /(A/(y)) coïncide donc avec A;_i (f(y)). De plus, / induit un revêtement

double non ramifié de A/(y) sur A,_i (/(y)) •

Si A/__i {/(y)) est non dégénéré, l'anneau A/_i (f(y)) est conforme à

un anneau standard Ar2 et l'application f'.Afy) A/_i(/(y)) ~ Ar2 se

relève en un homéomorphisme conforme A/(y) —+ Ar par le revêtement

Ar —» Ar2, z z2. Par suite, modA,_i (/(jO) —21ogr/(27r) et donc

modA,_i (f(y))=2modA,(y).

ii) Si xq n'est pas dans P/(y), les applications f et /-+1 sont des

homéomorphismes conformes. Par suite, / induit un homéomorphisme
conforme de Ajiy) sur A/_i (/(>')) et modA/ .j (/'(>0) =modA/(y).

iii) Si xo est dans P/Cy)\P/+iCy), l'application f est un revêtement double

ramifié tandis que f+1 est un homéomorphisme. Par suite, l'intersection

(f(Pi+\(y))) H Piiy) est formée de deux composantes connexes, Pi+\(y)
et une autre composante qu'on note Q. L'image /(Afy)) contient alors

/(Ô) =/(P;+,O0) • Ainsi, f{Al{y))/î/',( vi|.

Pour comparer les modules, on choisit un homéomorphisme conforme
de l'anneau A/_j (/(y)) sur un anneau standard Ar. On considère dans Ar le

cercle de rayon R passant par le point correspondant à la valeur critique /(xq)
Ramené dans l'anneau A/_i (/(y)), ce cercle donne une courbe de Jordan Y

qui entoure /(P/+i(y)) et passe par la valeur critique /(xo). L'image réciproque
de T par / est un huit que l'on décompose en ses boucles Y\ et T2 entourant

respectivement Pi+ \ (y) et Q et se touchant au point critique. L'application /
envoie alors l'anneau A compris entre dPfy) et Y\ UT2 sur l'anneau compris

entre dPt- \ (/'(>')) et Y avec un degré 2. Par suite, mod A De

plus, le disque bordé par Y] et contenant Pi+\(y) est conforme au disque

bordé par Y et contenant P, (f(y)). Par suite, l'anneau A' compris entre Y\
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et <9P/+10;) est conforme à l'anneau compris entre T et <9P/(/(y)), donc

mod A7 — log^R).

Finalement, les anneaux A et A' sont disjoints et homotopes à l'anneau

A/(y), de sorte que l'inégalité de Grötzsch donne

LEMME 1.18. Quelques propriétés du tableau T{x).

Tl) Si le terme T(x)ij est critique (c'est-à-dire contient le point
critique xo), il en est de même de tous les termes situées au-dessus, i.e. du type

T(x)kj avec k < i.

T2) Si le terme T(x)m>n est critique, le triangle de T(x) situé entre la
verticale et la diagonale montantes issues de ce point est une copie du triangle
de T(xq) situé entre la verticale et la diagonale montantes issues de T(xo)m,o i
autrement dit,

r(x0)m-/j pour 0 <j <i <m.

T3) On suppose que T(x)nun et T{x)m^^n+i, i > 0, sont deux termes

critiques et que, sur la diagonale qui les joint, aucun terme entre eux n'est
critique. Si Vanneau Am(fn(x)) est semi-critique, il en est de même de l'anneau
Am_/(/s+'(x)) à condition que l'anneau Am_/(/'(x0)) — du tableau T(xo) —
soit critique.

Illustration de ces propriétés (les symboles c et 0 indiquent les pièces
respectivement critiques et non-critiques).

c c c c

c 0 c c 0 0
: 0 : 0
: 0 : 0
c 0 c 0
c 0

v — V '
tableau critique: T(x0)tableau de x:

Preuve. Tl) provient de l'inclusion T(x)jj C T(x)kJ.
T2) provient de l'unicité de la pièce de profondeur n contenant le point

critique et de l'action diagonale de /.
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T3) D'après T2) et Tl), l'application fl induit des revêtements doubles

ramifiés de r(x0)m,o sur r(x0)m-;,/ et de T(x0)m+1,0 sur T(x0)m-i+ij. Par suite,

T(xo)m-i+ij a une seule préimage par fl dans T(xo)m,o> à savoir r(xo)m+i,o>
ce qui empêche T(x)m-i+1,«+/ d'être critique.

1.5 Réduction au cas d'un tableau critique récurrent persistant

Dans toute cette partie, on se place dans les hypothèses du théorème 1.10.

En d'autres termes, on suppose que le point critique xo est dans K(f) (le cas

xo ^ K(f) est réglé par la proposition 1.14), on se donne un point x de K(f)
et un graphe admissible Y qui bague le point critique xq et bague infiniment
le point x.

En suivant le plan exposé à la fin de la partie 1.3, on cherche à évaluer

le module des anneaux non dégénérés qui baguent x. Pour chaque anneau,
l'estimation dépend du nombre d'images itérées qui sont critiques ou semi-

critiques. Ceci conduit à utiliser la fonction r de Yoccoz et à regarder le type
de récurrence des tableaux.

DÉFINITION 1.19. On appelle fonction r de Yoccoz la fonction de N dans

NU{ —1} définie comme suit: pour tout entier n > 0, r(n) est la profondeur
du premier itéré (strict) de la pièce Pn{x) qui contient le point critique xo ;

si cet itéré n'existe pas, on pose r(n) — 1. Autrement dit, si E(w) désigne
l'ensemble

Un) {iG[0, n -1] Ixo G P,(/"~A)) } G N

la fonction r est donnée par

f sup Z(n) si E(n) 7^ 0
r{n) <

{ -1 si £(n) 0.

En particulier, r(n) < n et, comme P/+1 (fn~l(x)) est contenu dans P/(/n~'(x))
pour tout i > 0, r(n + 1) < r(n) + 1.

Remarque 1.20. Sur le tableau T(x), la valeur r(n) se lit comme la

profondeur de la première pièce critique qu'on rencontre strictement après

T(x)nio sur la diagonale issue de ce terme.

Si x n'est autre que le point critique xo, alors r(n) est la profondeur du

premier retour de xo dans une pièce du bout critique.
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Définition 1.21. Un tableau T(x) est dit:

• non récurrent si la fonction r est bornée;

• récurrent non persistant si lim inf r < oo et lim sup r — oo ;

• récurrent persistant si lim inf r oc.

Si un tableau T(x) est récurrent (resp. récurrent persistant, resp. non

récurrent) il en est de même du tableau T(f(x)).
On va étudier l'impression du point x en fonction du type de récurrence

de son tableau T(x).

LEMME 1.22. Si le tableau de x est non récurrent, on peut y trouver un

anneau non dégénéré noté Ap — de profondeur p — tel que, pour une infinité
d'entiers n, Vapplication fn~p induise un revêtement double non ramifié de

An{x) sur Ap. En particulier, l'impression de x est réduite au point x.

Preuve. Si r{n) < p pour tout n, le tableau T(x) ne contient aucune pièce

critique au-delà de la profondeur p. Ainsi, si Anfx) est une suite d'anneaux

de T (x) baguant x, chaque application

f"~
1 ~p : An;_! (/(x)) —> Ap (f'"~p(x)), K; >

est un homéomorphisme conforme (lemme 1.17). Comme il n'y a qu'un
nombre fini d'anneau de profondeur p, il en existe un, noté Ap, pour lequel
(quitte à extraire une sous-suite des m) chaque application fn'~p induit un
revêtement double non ramifié de An.(x) sur Ap. Par suite, la somme des

modules des anneaux du bout de x est infinie et l'impression de x est réduite
au point x.

Remarque 1.23. Pour le lemme 1.22 ci-dessus, il n'est pas nécessaire
de savoir que le graphe F bague le point critique xo.

A présent, on établit un lemme technique qui sera utile par la suite.

LEMME 1.24. Soit V une diagonale de T (x) qui ne contient aucune
pièce critique à une profondeur > p. S'il existe une première pièce critique
notée Pp{fJ(x)) sur la ligne p au-delà de V, l'application fJ induit un
homéomorphisme conforme de Ap+J^} (x) sur Ap_i (/7(x)).
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P -> 000C p -f 0 00 C

0 0 ...0 0...
0

0 0 0
X X 0 0

v v 0

V
hypothèses sur T{x) conclusions sur T(x)

Preuve. L'anneau Ap_\ (/y(x)) est critique car xo E Pp(f\x)). Pour voir

que p induit un homéomorphisme conforme de Ap+j- i(x) sur Ap^pp(x)),
il suffit donc de montrer que r(p +j— l) p — 1 et que r(p + j) p.

Soit (p. i), i < j, le point d'intersection de V avec la ligne p. Les

diagonales V et V" issues respectivement des points (p + j — 1,0) et

(p + j, 0) ne peuvent contenir de pièces critiques avant la colonne j en vertu
de la propriété Tl). En effet, jusqu'à la colonne i, V et V" se trouvent
en-dessous de V puis, jusqu'à la colonne j — 1, elles sont en-dessous de la

ligne p. Ceci montre exactement que r(p+j— 1) p—1 et r(pPj) p.

LEMME 1.25. Si le tableau de x est récurrent non persistant, l'impression
de x est réduite au point x.

REMARQUE 1.26. La preuve du lemme 1.25 ci-dessus utilise le fait que v
est infiniment bagué et que le point critique xq est bagué par T. Si on suppose
de plus que xo est infiniment bagué, on peut trouver un anneau non dégénéré

Ap(xo) tel que, pour une infinité d'entiers n, l'application fn~p induise un
revêtement non ramifié de degré borné de An(x) sur Ap(xo).

Preuve. Soit Ap(xo) un anneau non dégénéré baguant xq. On va montrer

que, pour une infinité d'entiers n, le module de An(x) est comparable à

celui de Ap(xo), au sens où il existe un entier r indépendant de n tel que

modAn(x) > 2~r modA^Cxo).

On pose / liminfr < oo et on envisage deux cas.

1) p > l : Dans ce cas, il existe une infinité d'anneaux du bout de

f(x) qui sont conformes à Ap(xo). En effet, soit ni < m-, < ni+ \ deux suites

intercalées vérifiant r(ni) l et r(m/) > p+ 1. L'inégalité r(n+ 1) < r(n)-f-1
assure qu'il existe un plus petit kt E [nt, m/[ pour lequel r(ki + 1) p + 1,

et qu'alors r(/q) p. L'anneau A^-i (/'W) est donc conforme à Ap(xq). De
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plus, l'anneau Akj{x) est non dégénéré (car Ap(xo) l'est) et son module vaut

au moins ^modAp(xo). Ainsi, une infinité d'anneaux du bout de x ont un

module au moins égal à ^modAp(xo).

2) p < l : On distingue encore deux cas, suivant le type de récurrence

du tableau critique.

i) Si le tableau du point critique est récurrent, on se ramène au cas 1)

en trouvant un anneau non dégénéré Aq(xo) avec q > /. Pour cela, on

observe que le tableau critique contient une infinité de colonnes formées

de pièces critiques jusqu'à la profondeur l au moins. Il existe donc, dans

la colonne 0 du tableau critique, un anneau de profondeur q > / qui est

sur une même double diagonale que l'anneau Ap{xo) pris dans une colonne

d'indice assez grand (supérieur à l—p). Cet anneau Aq(xo) est non dégénéré

(lemme 1.17).

ii) Si le tableau du point critique est non récurrent, une infinité d'anneaux

An(x) ont une orbite qui ne rencontre qu'un nombre fini borné d'anneaux

critiques ou semi-critiques avant d'atteindre Ap(xo). D'abord, sauf dans la

colonne 0, T{xo) ne contient aucune pièce critique au-delà d'une certaine

profondeur k. Ensuite, dans T(x) (tableau récurrent non persistant, avec

liminf r l E ]p% oo[), la double ligne p,p +1 coupe une infinité de colonnes

suivant deux pièces critiques. En descendant les doubles diagonales (vers le

Sud-Ouest) à partir de ces intersections, on croise au plus k — p + 2 anneaux

critiques ou semi-critiques. En effet, la propriété T2) du lemme 1.18 montre

que toute diagonale de T(x) contient, en dehors de la colonne 0, au plus une
pièce critique à une profondeur supérieure à k. Les intersections des doubles

diagonales ci-dessus avec la colonne 0 de T(x) fournissent ainsi, dans le bout
de x, une suite d'anneaux dont les modules sont comparables au module de

Ap(xo).

LEMME 1.27. Si le tableau de x est récurrent persistant, le point
critique x0 est infiniment bagué par T. De plus, si la somme des modules
des anneaux du bout critique est infinie, il en est de même pour le bout de

x et Vimpression Imp(x) est réduite au point x.

Preuve. On montre tout d'abord que le point critique est infiniment bagué.
Soit An.{x) la suite des anneaux baguant x. Comme r(n) tend vers l'infini,

on peut, quitte à extraire une sous-suite, supposer que la suite r(«/ + 1) est
croissante. D'autre part, les anneaux An.(x) et Ar(/î/+1)_1(x0) proviennent d'une
même double diagonale donc, d'après le lemme 1.17, Ar(;7/+1)_1(x0) est non
dégénéré. Par suite, le point critique est infiniment bagué.
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On montre à présent que le bout de x contient une copie conforme de

chaque anneau du bout critique et que ces copies sont disjointes. Ceci entraîne

que, si la somme des modules est infinie pour le bout critique, elle l'est aussi

pour le bout de x.
Soit p la profondeur critique maximale dans la colonne 0 de T(x). Pour

i < p, l'anneau A,(x) coïncide avec Aî(xq). Pour i > p, on regarde dans T(x)
la première pièce critique qu'on rencontre après la colonne 0 sur la ligne /+1.
Si (/+ 1 j), j > 0, sont les coordonnées de ce terme, le lemme 1.24 (appliqué
à la ligne i + 1 et à la diagonale V issue de (i 4-1,0)) montre que l'anneau

Ai+j{x) est conforme à A fixo). Comme, par construction, j croît avec i (au

sens large), les copies conformes qu'on obtient sont disjointes.

La proposition ci-dessous résume les trois lemmes précédents.

PROPOSITION 1.28. Soit x un point de K(f et F un graphe admissible

qui bague le point critique xq et bague infiniment le point x. Pour que

Vimpression Imp(x) soit réduite au point x, il suffit que l'une des conditions

suivantes soit remplie:

• T(x) est non récurrent ou récurrent non persistant ;

• T{x) est récurrent persistant mais T{xo) ne l'est pas.

De plus, dès que T(x) est récurrent persistant, le point critique xq est infiniment
bagué par T.

Les lemmes 1.30, 1.36 et 1.37 du paragraphe suivant règlent le cas où

T{xo) est récurrent persistant, le point xo étant infiniment bagué par F.

1.6 Cas d'un tableau critique récurrent persistant

Dans toute cette partie, on suppose que F est un graphe admissible qui

bague infiniment le point critique Xq

DÉFINITION 1.29. On dit que le tableau critique T(xo) est périodique
s'il contient une colonne, autre que la colonne 0, entièrement formée de

pièces critiques. Les indices de ces colonnes totalement critiques sont alors

les multiples d'un entier k qu'on appelle période de T(x<f). En fait, le tableau

T(xo) est périodique de période k si et seulement si le bout du point critique xq

est périodique de période k.
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Lemme 1.30. Si le tableau T(xo) du point critique est récurrent persistant

mais non périodique, la somme des modules des anneaux du bout critique est

infinie.

Le problème des anneaux critiques est qu'ils ont un module inférieur de

moitié à celui de leur image. Afin de compenser cette perte, on va trouver, pour

"chaque" anneau non dégénéré Ap(xo), deux anneaux distincts de profondeur

plus grande, A/(;c0) et A7(x0), ij > p, qui revêtent doublement Ap(xo) par un

itéré de /.

Définition 1.31. On dira qu'un anneau A/(v0) est le fils d'un anneau

Ap(xo), p < i, si fl~p induit un revêtement double non ramifié de A/(xo) sur

Ap(xo). L'anneau Ap(xo) sera donc le père de A/(vo). On note que, si le père

existe, il est unique.
Un anneau (critique) A/(xo) sera dit bon si, dans la double ligne i, i + 1

qui le porte, il n'y a aucun anneau semi-critique. On verra que cette qualité
est héréditaire et qu'un bon anneau a toujours deux bons fils.

La démonstration du lemme 1.30 repose sur les quatre affirmations ci-
dessous.

AFFIRMATION 1.32. Tout anneau (critique) a au moins un fils.

Preuve. Étant donné un anneau critique Ap(xo), on considère la première
pièce critique qu'on rencontre dans T(x0) sur la ligne p + 1 après la colonne 0

(elle existe bien car T(x0) est récurrent). Si on note (p+lfi—p) les coordonnées
de ce terme, le lemme 1.24 montre que l'anneau Ap(xo) est une copie conforme
de A;_i (/(v0)), de sorte que A/(v0) est un fils de Ap(x0).

AFFIRMATION 1.33. Si un anneau est fils unique, il est bon.

Preuve. On suppose que A,(x0) est le fils de Ap(x0) mais n'est pas bon.
Le tableau T(x0) contient alors un anneau semi-critique de profondeur z,

Ai(fj(xo)). Celui-ci se trouve nécessairement dans une colonne d'indice
j > i~p car la double diagonale liant le fils au père est formée de pièces non
critiques entre la colonne 0 et la colonne i-p qui porte Ap (fi~p(x{])) Ap(x0),
ces deux colonnes n'étant pas considérées. La règle T3) du lemme 1.18 fournit
alors un anneau semi-critique de profondeur p dans la colonne j +p et, entre
ces deux positions semi-critiques, les anneaux portés par la double diagonale
de A/(/:/(..\'o)) sont non-critiques.
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Soit (p+l,k) les coordonnées de la première pièce critique rencontrée sur
la ligne p + 1 après la colonne j + p. L'anneau Ap{fk(xo)) est critique et la

double diagonale qu'il détermine dans T(x<fi) est formée de pièces non critiques
au moins jusqu'à la colonne j. Sur cette double diagonale, le premier anneau

critique ou semi-critique rencontré se trouve à une profondeur /. Si cet anneau

est critique, c'est un fils de Ap{xo) différent de At{xo) car l > i. Si c'est un
anneau semi-critique, la propriété T3) montre que l'anneau A/_i(/"(xq)) (dans

la colonne 1) est conforme à un anneau semi-critique de profondeur p, à

savoir Ap{fl~p(xo)). On note alors Ap{fm(xo)) le premier anneau critique de

profondeur p qu'on trouve à droite de Ap(fl~p(xo)). D'après le lemme 1.24,

cet anneau est l'image conforme de Ap+m-\ (/(jto)) et Ap+m{xo) est donc un

fils de Ap(xo), à nouveau différent de A;(xo) car p + m > L

AFFIRMATION 1.34. Si un anneau est bon, il a au moins deux fils.

Preuve. Soit Ap(x0) un anneau et A/(xo) un de ses fils (affirmation 1.32).

La double diagonale qui joint At(xo) à son père Ap(fl~p{xo)) ^ Ap(xo) n'est

pas critique entre les colonnes 1 et i—p— 1. Par ailleurs, comme la colonne i—p

n'est pas totalement critique (car T(xo) n'est pas périodique), elle porte un

anneau semi-critique de profondeur finie k > p. D'après la propriété T3),
hors de la colonne 0, les seules positions critiques de profondeur > p sur la

double diagonale qui porte cet anneau ont pour coordonnées

(k -q{i-p),{q+ 1)0' -p}), 0 —V 7 l — p

En particulier, comme Ap(xo) est bon, k— p ne peut être un multiple entier
de i—p, sans quoi l'anneau Ap(fk+l~lp(xo)) serait semi-critique. Cet anneau

Ap{fkJrl~2p(xo)) est donc non-critique et le lemme 1.24 assure que le premier
anneau critique de profondeur p situé plus à droite, sur une colonne d'indice

j > k + i — 2p, est l'image conforme de Ay+/?_] (f(xo)). L'anneau A/+/,(xo) est

donc un second fils de Ap(x0).

AFFIRMATION 1.35. Si un père est bon, ses fils le sont aussi.

Preuve. En effet, si un anneau Ap(xo) a un fils A/(xo) qui n'est pas bon, il
existe un anneau semi-critique de profondeur i. La propriété T3) permet alors

directement de trouver un anneau semi-critique de profondeur p, de sorte que

Ap(xo) n'est pas bon.

Preuve du lemme 1.30. On va montrer que, pour tout anneau critique

non dégénéré Ap(xo), la somme des modules des descendants de Ap(xo) est
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infinie. Pour cela, on note Qn, n > 0, l'ensemble des descendants de Ap(xo)
à la /2-ième génération (Gi est formé des fils, Qo des petits-fils...). Comme

tout anneau a un fils et au plus un père, les ensembles Qn sont non vides

et disjoints. Par ailleurs, les affirmations démontrées plus haut assurent que

chaque ensemble Qn a au moins 2n~l éléments. En effet, les éléments de

Qn sont les descendants des éléments de G\ à la (n — l)-ième génération. Si

Qx a au moins deux éléments, la récurrence donne l'estimation. Si G\ n'a

qu'un élément, ce fils unique est bon (affirmation 1.33) et a donc deux fils

(affirmation 1.34), lesquels sont bons (affirmation 1.35) et ainsi de suite.

D'autre part, si A G Gn, le module de A vaut ^ modAp(xo). La somme
des modules des descendants de Ap(x0) est donc infinie.

LEMME 1.36. Si le tableau T{x0) du point critique est périodique, de

période k, Vapplication fk : Pj+k(.x0) —*• Pi(x0) est à allure quadratique pour
un certain entier /. L'impression Imp(vo) du point critique est alors l'ensemble
de Julia rempli de fk\pl+k(Xo) et est connexe.

Preuve. Entre la colonne 0 et la colonne k, la profondeur des positions
critiques est bornée par un entier i. Si Aj(x0) est un anneau non dégénéré de

profondeur />/ + £, la pièce P/(v0) contient Ë/+1(x0), donc aussi Pi+k(x0),
et l'application fk\pl+pXo) : Pi+k(x0) - P/(x0) est de degré 2, donc à allure
quadratique.

D'autre part, pour tout j > 0, les pièces du bout de fkj(x0) sont celles de la
colonne kj de T(x0), c'est-à-dire les pièces critiques. Par suite, fkj(x0) G P/(x0)
pour tout j, ce qui montre que l'ensemble de Julia rempli associé à fk est
connexe. Enfin, cet ensemble de Julia rempli est l'intersection des préimages
f~kj{Pi(x0)) qui sont contenues dans P/(v0). C'est donc l'intersection sur i
des Pm7(x0), c'est-à-dire l'impression Imp(x0) du point critique.

Pour compléter la démonstration du théorème 1.10, il reste à établir le
résultat ci-dessous.

Lemme 1.37. On suppose toujours que est périodique de période k.
Si un point x tombe par itération dans l'impression Imp(,\'o) du point
son impression Imp(x) est une préimage conforme de Imp(xo). Sinon, et si x
est infiniment bagué par F, l'impression Imp(x) est réduite au point x.

Preuve. Si /"(x) est dans Imp(x0) f| la colonne n de T(x) est
/>o

entièrement critique. De plus, si nest le plus petit entier tel que /"(x) soit
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dans Imp(xo), les pièces critiques situées sur les colonnes 0,— 1 de

T{x) ont une profondeur bornée par un entier /. Par suite, pour tout i > /,
l'application fn induit un homéomorphisme conforme de Pi+n(x) sur Pi(xq),
donc un homéomorphisme de Imp(x) sur Imp(xo).

On suppose à présent que l'orbite de x évite Imp(xo), c'est-à-dire

qu'aucune colonne de T(x) n'est entièrement critique. On va montrer que, si

T(x) est récurrent, il est non persistant. Il suffit pour cela de construire une
suite ni sur laquelle r est bornée.

Dans le tableau T(xo), entre les colonnes 0 et k, les positions critiques ont

une profondeur majorée par /. Dans T(x), on regarde la colonne de plus petit
indice j où l'on trouve des positions critiques à une profondeur strictement

supérieure à / et on note p la profondeur de la dernière position critique sur

cette colonne. L'anneau Ap(/7(x)) est donc semi-critique. La propriété T3)
assure alors que la diagonale issue de la position (p + y -f 1,0) dans T(x) ne

contient aucune pièce critique à une profondeur strictement supérieure à l + 1.

Ainsi, r(p + j + 1) < I + 1 et on pose n\ p + j + 1. On continue en

considérant la colonne de plus petit indice qui contient des positions critiques
de profondeur strictement supérieure à p. On construit ainsi une suite nt sur

laquelle r reste bornée par / + 1.

§2 La pratique

2.1 Un théorème de connexité locale
On s'intéresse dans la suite aux polynômes de degré d+ 1, d > 2, dont

l'un des points fixes dans C est un point critique de multiplicité d — 1. Un tel

polynôme est conjugué, par une transformation affine de C, à un polynôme
de la forme

(*) fi?d) — ö (yX ^(v — x G C

où a désigne le point fixe critique de multiplicité d — 1. Le point —a est

alors l'unique autre point critique et sera appelé (par contraste) point critique
libre.

Le point a est un point fixe super-attractif. Son bassin d'attraction est

l'ouvert

B(a) \x e C | fn(x) * a\
l n—*oo J
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et son bassin immédiat, noté B(a), est la composante connexe de B(a) qui

contient a. Le but de cette partie est de démontrer le théorème suivant:

THÉORÈME 2.1. Le bord du bassin immédiat B(a) est localement connexe.

En fait, c'est une courbe de Jordan.

Remarque 2.2. Le cas où d 2 a été considéré par D. Faught dans sa

thèse [Fa].

La démonstration du théorème, qu'on expose dans la suite, distingue deux

cas.

Si le point critique libre —a est dans B(a) ou dans le bassin de l'infini

B(oo) ix G C | fn(x) \ oc jl n —f oo

le polynôme / est hyperbolique. La preuve s'appuie alors sur des arguments
très classiques qu'on explique brièvement dans la partie 2.3.

Dans la suite, on considère donc un polynôme / de la forme (*) pour
lequel —a n'est ni dans B(a), ni dans B(oo). La démonstration se déroule

en trois étapes. On donne d'abord une première description de la dynamique
du polynôme / fondée sur des résultats classiques [Ml]. On exploite ensuite

cette description pour trouver un graphe admissible auquel on puisse appliquer
le théorème 1.10. Si le bout critique n'est pas périodique, chaque impression
est réduite à un point et il suffit alors de voir que l'adhérence de toute pièce a

une intersection connexe avec le bord de B(a) pour établir la connexité locale.
Sinon, il reste une étape pour montrer que l'impression du point critique libre
rencontre dB(a) en un seul point.

2.2 Étude rapide de la dynamique

On observe tout d'abord que, comme f~l(oc) {oo}, le bassin d'attraction
B(oo) est connexe. Ensuite, le théorème de Böttcher [B] donne le résultat
suivant (voir [Ml, 17.3]):

PROPOSITION 2.3. Si —a est en dehors de B(a) (resp. de B(oo)), il
existe une représentation conforme fa : D — B(a) (resp. <f: D —>> B(oo)) qui
conjugue f à t zd (resp. à z •—» zcl+l) et est unique à composition près
dans D avec une rotation d'angle 2kir/(d — 1) (resp. 2kir/d).



156 P. ROESCH

De telles représentations, lorsqu'elles existent, induisent des coordonnées

polaires très utiles sur B(a) et B(oo). On appelle ainsi:

• rayon d'angle 0 issu de a l'ensemble

Ra{9){ <paire2ilT9).[0,1[} ;

• rayon externe d'angle 6 l'ensemble

R(6)={00-e20), /• |(). Iii ;

• äquipotentielle de niveau v autour de a la courbe

Ea(v){Mre2i7r96e R/Z} ;

• äquipotentielle externe de niveau v la courbe

E(v){<t>(re2iv6)7 6 e R/Z}

Les rayons sont des arcs sur lesquels la dynamique agit simplement :

f(Ra{9)) Ra(dO) et f{R(0)) R((d + 1)9). De plus, les rayons d'angles
rationnels forment toujours des chemins d'accès à l'ensemble de Julia J(f) :

THÉORÈME 2.4 (Douady, Hubbard, Sullivan, Yoccoz).

a) Pour tout 6 G Q/Z, les rayons Ra(9) et R(0) aboutissent chacun en un

point de l'ensemble de Julia, c'est-à-dire que les arcs r G [0, 1 [i—> fa(re2l7v6)

et r G [0, i\j—> (j)(re2l7r0) ont chacun une limite dans J(f lorsque r tend

vers 1. De plus, chacune de ces limites (ou points d'aboutissement) est un

point pré-périodique répulsif ou parabolique.

b) Tout point périodique répulsif ou parabolique de J(f) est le point
d'aboutissement d'au moins un rayon externe qui est périodique.

On rappelle ici qu'un point p-périodique x de f est parabolique si (fp)'(x)
est une racine de l'unité.

Esquisse de preuve. Pour une preuve complète, voir [Ml, 18.1 et 18.2].

a) On traite le cas du rayon issu de a (l'autre est analogue). Comme 9

est rationnel, Ra(9) est pré-périodique par / et, quitte à changer 9 en l'un de

ses multiples, on peut supposer que Ra(9) est fixe par un itéré fk. On choisit

un point yo G Ra(9) et on regarde la suite yi,...,yn,... de ses préimages
Successives par fk sur Ra(0). La distance hyperbolique dist/,(y,Mjy+i), dans

B(a) \ {a}, est égale à dist/2(yo,3d). Comme la suite yn s'accumule sur

dB(a), la distance euclidienne disL(yn,y/î+i) tend vers 0. De plus, comme

fk(yn+i) — yn, les valeurs d'adhérence de la suite yn sont des points fixes
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par fk et sont donc en nombre fini. Par ailleurs, toute suite y- G Ra(0) est à

distance hyperbolique bornée d'une suite extraite yn. et ses valeurs d'adhérence

sont donc aussi des points fixes de fk. Comme l'accumulation du rayon est

connexe, elle est réduite à un point.

b) La preuve est plus difficile et on n'en donne qu'une idée très succincte

pour un point /:-périodique répulsif x. D'après un théorème classique de

G. Kœnigs, x possède un voisinage U sur lequel / est analytiquement
conjuguée à l'application z » Az où À. *= (fk)'(x)- On voit facilement que
chaque composante connexe V de U \ K(f) est simplement connexe et le

point délicat est de montrer qu'elle est périodique par fk, i.e. que fkl(V) D V

pour un certain entier i. On vérifie ensuite que l'anneau V/fkl obtenu en

quotientant V par la relation d'équivalence x ~ fkl(x), avec sa métrique
hyperbolique, a une géodésique fermée et celle-ci se relève alors en le rayon
externe cherché.

Dans le bassin B(a), on a en outre le résultat suivant qui, compte tenu du
théorème de Carathéodory [C], montre que le bord dB (à) est une courbe de

Jordan dès qu'il est localement connexe:

LEMME 2.5. Si deux rayons issus de a (d'angles rationnels ou non)
aboutissent en un même point de dB(a), ils sont égaux.

Preuve. Sinon, les deux rayons forment, avec leur point d'aboutissement x,
une courbe de Jordan qui borde un ouvert connexe borné U. Comme dU est
inclus dans B(a) qui est compact et invariant par /, le principe du maximum
assure que la famille f\ n > 0, est bornée sur U et donc normale. Pour
obtenir une contradiction, il suffit alors de montrer que U rencontre J(f).
Or, si ce n'est pas le cas, x est le seul point sur lequel peuvent s'accumuler
les rayons Ra(6) contenus dans U et, par suite, tous ces rayons convergent
vers x. Les angles de ces rayons forment un intervalle de R/Z et, comme la
multiplication par deux est dilatante, on voit que tout rayon issu de a aboutit
en x, ce qui est absurde.

2.3 Le cas hyperbolique
On suppose ici que -a se trouve soit dans B(a), soit dans B(oo). On note

P(f) l'ensemble post-critique de / — i.e. l'adhérence des orbites positives
de tous les points critiques de / — et on pose U C \ P(f). Comme P(f)
contient au moins a, a et oo, le revetement universel U de U est un disque
— sauf si a 0, auquel cas l'ensemble de Julia est exactement le cercle
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unité puisque f(x) xJ+1 — et on désigne par 7r la projection U U. Par

ailleurs, f~l(U) C U car / envoie dans lui-même.

LEMME 2.6. Aw voisinage de J(f), Vapplication f dilate exponentiellement
la métrique hyperbolique de U.

Preuve. On va construire une application holomorphe g de U dans
7ï--1 (f~l(U)) C U qui fait commuter le diagramme

ùtt-1(/-'([/))

4 h
U < f-\U)f

et a un point fixe attractif. Le lemme découle alors du fait que, d'après le
lemme de Schwarz, g contracte exponentiellement la métrique hyperbolique
du disque U sur tout compact de U.

Pour trouver g, on note d'abord que J(f) contient au moins un point fixe

répulsif, par exemple le point d'aboutissement yo du rayon Ra(0) (celui-ci n'est

pas parabolique car il n'est pas dans P(f)). D'autre part, —> U est

une application holomorphe propre sans points critiques, donc un revêtement.

On obtient g en relevant tt: U —» U à ce revêtement puis à 7r-1(/-1(£/)) en

une application fixant une préimage de yo dans U.

On suppose maintenant que —a est dans B{00). Si (f>a: D —>• B(a) est

une représentation conforme fournie par la proposition 2.3, on regarde les

applications

In: R/Z » C, t^ Jn0fl((l/2)Ve^')

LEMME 2.7. La suite 7n converge uniformément vers une application
surjective de R/Z dans dB(a). Par suite, dB(a) est localement connexe.

Preuve. Pour no assez grand, l'image de 7no est dans le voisinage de

J(f) où / dilate la métrique hyperbolique de U. On note alors À > 1 la

constante de dilatation de la métrique et on pose

C sup{dist£y(7„0(0,7no+i(0), t e R/Z}

Le fait que / envoie chaque rayon dans B(a) sur un autre rayon assure que,

pour tout n> no et tout t G R/Z,



PUZZLES DE YOCCOZ 159

disty (7,, (r): 7n+l W) < CX"° "

ce qui entraîne la convergence uniforme voulue.

Si maintenant —a est dans B(a), alors f~l{B(a)) B(a). Il en découle

l'égalité dB(a) J(f) dB{00). En effet, tout point x qui n'est pas dans

B(d) a un voisinage V disjoint de B(a). Par suite, toutes ses images itérées

f"(V) évitent B(a), ce qui montre que la famille {/"} est normale sur V,
donc que x n'appartient pas à J(f). On applique alors à une représentation de

Böttcher <fi: D —» B(00) le même raisonnement que plus haut pour montrer

que dB (a) est une image continue du cercle.

Il reste à voir que dB (à) est bien une courbe de Jordan. On distingue
deux cas :

Si —a est dans B(oo), la représentation conforme <fia : D —>• B(a) est bien

définie et le résultat découle alors du lemme 2.5.

Si —a est dans B{a), en conjuguant / par une transformation de Mœbius

0 qui échange a et 00, on obtient un polynôme g qui possède un point fixe

super-attractif O(oo) et dont le bassin immédiat (<D(B(00))) ne contient pas
d'autres points critiques. Dans ce cas on a bien une représentation conforme
du bassin immédiat à laquelle on peut alors appliquer le lemme 2.5.

2.4 Construction de graphes admissibles

On suppose désormais que le point critique libre —a n'est ni dans B(à)
ni dans £(00) et on regarde le polynôme / comme une application à allure
rationnelle de X' dans X où

X=C\(4((l/2)D)u<ya/2)D)) et

Figure 1

Le graphe T((9) avec, en gris, le bassin immédiat B(a) privé de 1/2)D)
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Pour construire un graphe admissible, on observe d'abord que, pour tout
I > 1, l'angle 0 \/(dl — I) est, modulo 1, /-périodique par multiplication
par d. D'après le théorème 2.4-a), le rayon Ra(6) converge donc vers un point
périodique x répulsif ou parabolique. En prenant / assez grand, on s'assure

d'une part que l'orbite positive du point critique —a est disjointe de celle
de v et d'autre part que x est répulsif (en effet, / possède au plus une orbite

périodique parabolique car tout orbite de ce type attire un point critique). Le
théorème 2.4-b) fournit alors un rayon externe périodique R(rj) qui aboutit

en v. Avec ces rayons, on forme*) le graphe admissible suivant:

r(0) dx U f X n ((J Raid19) UR((d+ iy'77)) J
^ ;>o '

Sur le cercle identifié à [0, l]/(0 ~ 1), les angles dl6, 0 < i < / — 1,

sont rangés en ordre croissant. On va maintenant vérifier que le graphe T(0)
satisfait les hypothèses du théorème 1.10.

On distingue deux types de pièces de profondeur 0 découpées par T(0),
selon que leur bord est formé, en dehors de dX, de quatre rayons — deux dans

B(a), deux dans B(00) — ou simplement de deux rayons externes. Comme

on s'intéresse surtout aux pièces du premier type, on appellera losange tout
ouvert de C dont la frontière est l'adhérence d'exactement quatre rayons
d'angles rationnels dont deux sont dans B(a) et les deux autres dans B(00).
Les propriétés suivantes sont immédiates:

1) tout losange rencontre B(a) \ {a} suivant une partie stricte;

2) si C et V sont deux losanges tels que U n V n B(a) {a}, alors

u n y {a, 00} ;

3) l'union de deux losanges qui s'intersectent est soit un losange, soit

C \ {a, 00} ;

4) si U et y sont deux losanges tels que f(dU) dV, f(U) rencontre

y H B(a) et si U intersecte B(a) dans un secteur angulaire d'ouverture
strictement inférieure à l/d (i.e. si 0\ < 02 sont les arguments des rayons
de dUDB(a) alors 02-0{< l/d) alors U D B(a) C f~l(V).

Pour le point 4), il suffit de voir que U H B(a) ne coupe pas de préimages du

bord de V. Ceci découle du fait que l'ouverture angulaire est trop petite pour
intersecter f~x(dV) D B(a), puisque dU est déjà dans f~l(dV). Par suite, /
envoie U H B(a) dans VDB(a), d'où l'affirmation.

*) Souvent, par abus de langage, on dira qu'un rayon fait partie de l'adhérence ou du bord
d'une pièce si cet ensemble contient au moins deux points du rayon. D'autre part, par extension,
on appellera encore rayon toute préimage itérée d'un rayon de B{a).
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On note Ti(0) le graphe /_1 (r(0)). Les rayons de B(a) qui font partie de

Tj (0) \ T(0) ont pour angles les dl0 + (j/d), 0 < i < l — 1, l < j < d — l, qui

sont tous dans l'intervalle du cercle contenant 0 et délimité par 0 + (1 /d) et

9/d (voir la figure 2). On se donne d'autre part un losange £7(0) qui contient

R0(0) \ {a} et est bordé par Ra{9 + (1 /d)), Ra(9/d) et deux rayons externes

faisant partie de ri(0).

Figure 2

Le cas d 4, 1—3 vu dans D via avec, en pointillés, B(a) D r(0),
en continu, B(a) D {T\(6)\ T(0)) et, en gris, U(6) fl B(o)

LEMME 2.8. Tout point de J(f)n (U(6)\Ti(6)) est bagué par T(6) à la

profondeur 0.

Preuve. L'intersection U(0)P\Xf qui est une union de pièces de

profondeur 1, est relativement compacte dans la pièce de profondeur 0 qui
rencontre Ra(0) et qu'on note Pq (voir la figure 2). En effet, Pç, est la trace

sur X d'un losange P0 bordé dans B(a) par Ra(6) et Ra(6/d+l/d). Comme
1 > 0+ \/d > 0/d-P l/d et 0 < 9/d < 0, l'intersection U(9) H (C\P0) DB(a)
est réduite à a. Par suite, U(9) et C \PQ ne se touchent qu'en a —
propriété 2) des losanges. Ainsi, U(9) C\Xf c Pq.

LEMME 2.9. Soit 6 - 1 /{d1 - 1) et 6' 1 /(/ - 1) avec l' > l + 1 et
l assez grand. Tout point de dB(a) est bagué à une profondeur bornée par
Tun des graphes T(0) ou T(0/)-

Preuve. On remarque tout d'abord que

((U(0) \ n(0)) u (U(6')\r,(0'))) n X' (cm u
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car les graphes et Ti (9f) sont disjoints dans X'. Par suite, il suffit
de montrer qu'il existe un entier n > 0 tel que |J f~l{U(9) U U{9'))

0<i<n
contienne dB(a).

L'ouvert U(9) U U{9') est un losange que l'on note Vo, les rayons de

B(a) inclus dans <9Vo sont d'angles 77 6' + 1 /d, £ 9/d. On note n le

plus petit entier tel que r\/dn < £, on va construire, pour 0 < m < n, un
ouvert Vm ayant les propriétés suivantes :

• Vmn dB(a) est inclus dans (J f~l(V0) ;

0<i<m

• Vm, pour m < n, est un losange qui contient Ra(l/dm) et est bordé
dans B(a) par Ra{j]jdm) et Ra(0'>

• Vn C\{a}.
Il existe un losange V[ contenant Ra(l/d) et bordé dans B(a) par Ra(rj/d),
Ra((/d+ 1 /d), dont tout le bord est inclus dans f~~1 (OVq). Alors, d'après
la propriété 4), V[ H B(a) C /_1(V0). Comme (/d + \/d > 77, les losanges

V[ et Vo s'intersectent et V\ Vo U V[ est un losange ayant les propriétés
demandées. On construit de même un losange V'm pour tout m < n et on

pose vm

Figure 3

Illustration de la démonstration du lemme 2.9

Remarques.

a) Toutes les constructions précédentes et en particulier les lemmes 2.8

et 2.9 restent évidemment valables si on prend des graphes d'angle opposé
i.e. d'angle 1—9 avec 9 toujours de la forme l/(dl — 1).

b) La profondeur à laquelle on parvient à baguer les points de dB (a) est

bornée indépendamment du point considéré, mais croît avec / et l'. Ce fait est
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insignifiant puisque l'on obtient finalement, d'après le lemme 1.12, que tout

point de dB{a) est infiniment bagué par un graphe T(0) avec 0 l/(dl - 1)

et / assez grand.

D'après la remarque b) précédente, il reste à baguer le point critique —a

(qui se trouve dans K(f)) et conclure par le théorème 1.10. On a le lemme

suivant :

Lemme 2.10. Il existe /0 G N et 6 G {±1} dépendant uniquement de

a tels que pour tout l > lo, le point critique libre —a est bagué à la

profondeur 0 ou 1 par T(S6) où 6 est de la forme 1 /{d1 — 1).

On assimile dans cet énoncé —6 et 1 — 6.

Preuve. Pour d > 2, et / assez grand, l'ensemble U(9) contient tous les

rayons Ra(t), t G [1/2,1] et U( 1 —6) tous les rayons Ra(t), t G [0, 1/2]. De

ce fait, U{6) U U{\ — 6) contient B(a) \ {a] ; c'est donc C \ {a} en vertu des

propriétés 1) et 3) des losanges. De plus, comme les graphes sont admissibles

(on prend lo grand dans ce but), —a n'est sur aucun graphe de profondeur 1.

Ceci résout le cas d > 2.

Pour d 2, l'ouvert U{6) U U(l — 6) ne recouvre plus B(a). Néanmoins,

pour tout / > — loge/log d où e est un rationnel petit, U(9) contient tous les

rayons Ra(t), t G [1/2+g, 1] et £7(1 — 0) tous les rayons Ra(t), t G [0,1/2 —g].
On suppose donc désormais que le point critique —a est dans un losange V
bordé par Ra( 1/2 +s), Ra( 1/2-e) et contenant Ra( 1/2). Pour voir que —a

est bagué à la profondeur 1, comme a priori il se peut que V contienne
une partie d'une préimage de B(a), on va montrer que la valeur critique
f{-a) est baguée à la profondeur 0 et plus précisément qu'elle se trouve dans

c\v c u(0) u u{\ - 6).

On suppose donc que f(-a) est dans V, qui est un disque. Comme /
est de degré 3 et que -a est simple, f~l(V) est formé de deux disques et
ceux-ci ne touchent pas f~\ÔV). Or il y a deux losanges Vu V2 évidents
qui ont leur bord inclus dans f~l(dV), contiennent respectivement Ra( 1/4),
Rai3/4) et vérifient

CÔVl Ct i?«(ï±|)Cay2'

Par suite, les deux composantes de f~\V) sont incluses dans Vj U V2 qui
contient donc — aet est disjoint de V.
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En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de dB(a), l'un des graphes T(0), ou T(1 — 0) bague infiniment x et bague le

point critique —a. Le théorème de Yoccoz 1.10 et le lemme 2.11 ci-dessous

assurent alors que dB (à) est localement connexe en x ce qui achève la preuve
du théorème 2.1, sauf dans la cas où le bout de —a est périodique et si x
tombe dans Imp (—a) par itération. C'est ce cas qu'il reste à étudier dans la

partie suivante 2.5.

Pour trouver des voisinages connexes d'un point x de 9B(a), on va extraire
de chaque intersection Pn(x) H dB (a) un voisinage connexe de x dans dB(à)

qui est de la forme f] Q(u,r,rf) avec r, r' G Q/Z où
ue] o,i[

Q(u,r, r') {<t>a(re2,7rt) | r G ]w, 1[, / G ]r, r'[}

LEMME 2.11. Tout point x de dB(a) dont l'impression P Pn(x) est ré-
n> o

duite à x possède un système fondamental de voisinages connexes dans dB(a).

Preuve. Toute pièce de profondeur n rencontre B(a) suivant des secteurs

du type Q(2_1//J', r, r7) car son bord est formé, dans B(a), (de morceaux) de

rayons rationnels et de l'équipotentielle de niveau 2~l/d". Par ailleurs, comme

x appartient à Pn(x)OdB(a), il possède un voisinage dans Pn(x) qui rencontre

B(a). Ce voisinage rencontre alors un secteur Q(2~lfd'\ r, t') C Pn(x) P\ B(a)
où Ra(r), Ra(r') font partie de dPn(x). Ainsi, l'intersection

u„= H ß("' r' T') C
ue] o,i[

est un voisinage de x dans dB(a), compact et connexe (c'est une intersection
décroissante de parties compactes connexes). Comme l'intersection des pièces

Pn{x) se réduit au point x, la suite Un constitue un système fondamental de

voisinages connexes de x dans dB(a).

2.5 Cas d'un bout critique périodique

On considère à présent le graphe F parmi T(6) et T(1 — 0) qui bague

le point critique libre —a (à la profondeur 0 ou 1) et on suppose que
le bout de —a est &-périodique. D'après le théorème de Yoccoz 1.10,

l'application fk : Pm±k(—a) Pm(~û) est à allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est l'impression

Imp (—a) H Pn(—a). Deux cas se présentent alors. Si B(a) n'intersecte
n> 0

pas K, la connexité locale de dB(a) découle encore une fois du théorème de
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Yoccoz 1.10 et du lemme 2.11, car aucun point de dB(a) ne tombe dans K

par itération et toutes les impressions sont donc réduites à des singletons.

Sinon, on montre que dB(a) H K est formé d'au plus un point (lemme 2.13)

qui est un point fixe par fk noté ß. Il en résulte que, si l'orbite d'un point

x G dB(a) passe dans K, la suite des parties Pn(x) Pi dB(a) forme, dans

dB(a), un système fondamental de voisinages de x puisque leur intersection

est réduite à une préimage itérée de dB(a)nK C {0}. Le lemme 2.11 permet

alors de conclure que dB{a) est localement connexe en x. Ce qui achève la

preuve du théorème 2.1.

Dorénavant, on suppose que K n dB{a) ^ 0 et dans la fin de cet article on

montre que dB(a) fi K est formé d'au plus un point. Dans un premier temps,

on trouve un point répulsif ou parabolique dans K n dB(a) :

Lemme 2.12. Il existe dans B(a) un rayon Ra(rj) qui est k-périodique

par f et aboutit en un point ß G K D dB(a) — fixe par fk.

Preuve. On reprend les notations données juste avant le lemme 2.11.

On montre tout d'abord (par récurrence sur n) que, si une pièce Pn de

profondeur n rencontre B(a), l'intersection Pn fi B{a) est formée d'un seul

secteur du type <2(w,t, r'), où l'intervalle ]r, r'[ du cercle a une longueur
strictement inférieure à l/<in+1.

Une pièce Pq de profondeur 0 a clairement cette propriété. D'autre part,
toute pièce Pn+ \ de profondeur n + 1 est contenue dans une pièce P'n de

profondeur n et a pour image par / une (autre) pièce Pn de profondeur n.
Par hypothèse de récurrence, Pn fl B(a) est du type Q(un, r,u rffi, avec

\Tn~Tn\ < 1 /dn+x. L'ouvert Q(un) rn, r'n) a donc d préimages dans B{a), qui
sont de la forme

q(u,t + + ^), 0 < i < d — 1,

où u — ujd et \r' — t\ < l/dn+2. L'intersection Pn+\ n B(a) coïncide alors

avec l'un de ces secteurs ouverts: elle en contient un tout entier car elle
est bordée par des rayons préimages de ceux qui bordent Pn et elle ne peut
en contenir deux car deux tels secteurs diffèrent de \/d alors que la pièce
P!n D P,7+i rencontre B{a) dans un secteur d'ouverture < l/d (hypothèse de

récurrence). On choisit alors r, r' pour que

Pn+1 fl B(a) Q(u1 r, r').
Soit maintenant x un point de K ndB(a). S'il se trouve sur une préimage
Tn du graphe T, c'est immédiatement le point d'aboutissement d'un rayon
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prépériodique de B(a). En prenant son image par un itéré convenable de /,
on obtient un rayon périodique qui converge vers un point ß G KH dB(a) fixe

par fk. Si x n'est sur aucune préimage du graphe, la pièce Pn(x) rencontre

B(a) suivant un secteur de la forme Q(2~l^d'\rn,rß) avec \rn — r/| < \/dn.
Les angles (r„), {r'n) forment des suites adjacentes dont on note 77 la limite
commune. Comme x G K C Pn(—o), nécessairement Pn(x) Pn(—a) et, de

ce fait,
fk Pn+kix)n B(a)) Pn(x) n

pour n assez grand. Par suite, dkr) est dans l'intervalle ]rn,r'n[ C R/Z, de

sorte que dkrj 77. Le rayon d'angle 77 converge alors vers un point ß
(théorème 2.4). Ce point ß est fixe par fk et, comme il se trouve dans toutes

les pièces Pn(—a), il est dans K H dB(a).

LEMME 2.13. Il existe deux rayons externes R{Q, R{Ç')> d'angles Ç,

rationnels, qui aboutissent au point ß et sont tels que la courbe de Jordan

R(0 U R(C) U {ß} sépare K \ {ß} de B(a) \ {ß}.

Preuve. Dans la preuve du lemme 2.12, on a vu que Pn(—a) DB(a) est

de la forme Q(2-1/^, r„, rß). Les rayons Ra(rn), Ra(j'n) convergent vers des

points yn, y'n de dB(a) en lesquels aboutissent aussi des rayons externes

qui font partie de dPn(—a) et qu'on note respectivement /?((«), R(Ç'n). La
suite Çn (resp. ('n) est alors croissante majorée (resp. décroissante minorée) et

converge donc vers un angle limite (resp. ('). De plus, comme fk est un

homéomorphisme local en les points yn, y'n et que fk{Pn^k(—a)) s= Pn(—a)

pour n assez grand,

f{R((n+k))=R(Cn),etf(R(Cn+k)) =R(0-
Il en résulte que (d + l)^Cn+£ Cn (dans R/Z) et, par suite, que Ç est

périodique de période divisant k. Les rayons R(Q, R(C) convergent ainsi

vers des points y, y' qui sont fixes par fk et qui appartiennent à K — car
la partie des rayons R(Ç), R(C) située au-delà du potentiel 2~l/d" se trouve
dans Pn(—a).

D'autre part, le théorème de redressement de A. Douady et J. H. Hubbard

[DH2, théorème 1] montre que fk est conjuguée à un polynôme quadratique

fc(z) z2~hc par un homéomorphisme a d'un voisinage de K sur un voisinage
de l'ensemble de Julia rempli Kc de fc. Les points a(ß), a(y) et a(y') sont

des points fixes de fc en lesquels aboutissent des arcs externes fixes par fc

— à savoir a(Ra(r/)), a{R(Q) et cj(R(C0)• Or un polynôme quadratique

possède au plus deux points fixes parmi lesquels un seul — généralement
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noté ßc — est l'aboutissement d'un arc externe fixe [P, théorème A]. Par

suite, R(Q, R(C) convergent nécessairement vers ß.

Finalement, R(QUR(C) forme une courbe de Jordan qui sépare K\{3} de

B(a) \{ß}. En effet, le losange Vn bordé par Ra{rn), Ra(j'n), R{Q et R(Q
contient la pièce Pn(—à) par construction. Il contient donc K et, par suite,

au moins un point périodique répulsif p (différent de 3 et un rayon externe

qui converge vers p, de sorte que Ç ç', Ainsi, la composante connexe U

de C \ (jR(C) U R(C)) qui contient p contient K \ {3} — car K ne peut

rencontrer la courbe R(Q U R(C) qu'en 3 et ce point ne disconnecte par K

[M, théorème 6.10].
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