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126 L. BARTHOLDI

Proof. This follows from

1
1 /p{Gx) lim -lr^oo (f Gx)

lim —- H —- — - by (9.2)

l/p(G£) + l/p(Gr)-0.

Note that the corollary does not extend to non-recurrent series ; for instance,
it fails if £ T L.Indeed then

Ge= Gjr -,p(Ge) p(Gf) 1/4,
VI - 4 t2

Cj;=l+2V1-12

10. Direct products of graphs

There are two natural definitions for direct products of graphs; they
correspond to direct products of groups with generating set either the union

or cartesian product of the generating sets of the factors. A general treatment
of products of graphs can be found in [CDS79, pages 65 and 203].

DEFINITION 10.1. If S is a set, the stationing graph on S is the graph
X — TLS with V(X) E(X) S, where for the edges sa s^ s s hold.

LEMMA 10.2. Let X be a graph, and S XUZ^ be the graph obtained

by adding a loop to every vertex in X. Let Gx and Gg be the growth functions
for circuits in X and 8 respectively. Then we have

G£(t)=frGx(Jff.

Definition 10.3 (First Product). Let 8 and T be two graphs. Their
direct product X 8 x T is defined by

V(X) V(8) x V(X)

and

E(X) (E(8) x S^r) U ÇLs x EÇF))
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Note that if the graphs £ and T have respectively adjacency matrices E

and F, then their product has adjacency matrix E <g) 1 + 1 0 F.

In that case we have

G —
1 J) ^ ^ dux 2/7r %

1 u

This is a simple application of the Laplace transform, that converts an

exponential generating function into an ordinary one and vice versa [AS70,

29.3.3]. Indeed, if we had considered exponential generating functions, the

formula would simply have been Gx GgG^, as is well known (see [Wil90]

or [Sta78, page 102]).

As an example, let £ — T — Z, so Gs Gj? • Then

1 / du
* 2/tt %i y7(l - 4(1 + u)2t2)(u2 — 4(1 + u)2t2)

-K(\6t2) f(P2P2 16t2)
7T

V I I /

where K is the complete elliptic function and F the hypergeometric series.

These functions are known to be transcendental; thus the circuit series of Z2

is transcendental. This result appears in [GH97]. Numerical evidence suggests
the growth function for is not even hypergeometric.

Definition 10.4 (Second Product). Let £ and T be two graphs, and

suppose that for every vertex in £ and T there is a loop at it. Then their
direct product A £ x T is defined by

V(X) V(E) x V(F)

and

E(X) E(£) x E{T)

Note that if the graphs £ and T have respectively adjacency matrices E
and F, then their product has adjacency matrix E 0 E.

In that case we have, again using Laplace transformations

Gx(t)—r-
J)

Z17T 7si U

Note that with both definitions of products it is possible that the growth
function for circuits in the product be transcendental even if the growth
functions for circuits in the factors are algebraic.
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