Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 45 (1999)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: COUNTING PATHS IN GRAPHS

Autor: Bartholdi, Laurent

Kapitel: 7.4 TOUGHER EXAMPLES

DOI: https://doi.org/10.5169/seals-64442

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-64442
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

COUNTING PATHS IN GRAPHS 115

of a cycle is the regular tree 7 of degree 2, and circuits in C correspond
bijectively to paths in 7 from * to any vertex at distance a multiple of k.
We thus have
Fe(u,t) = Z H(u,C,1)
G:¢F=1

where the sum runs over all kth roots of unity and d =2 in H.

We consider next the following graphs: take a d-regular tree and fix a
vertex %. At «, delete e vertices and replace them by e loops. Then clearly

1+t
l—(e—1t’

F0,1) =

as all the non-backtracking paths are constrained to the e loops. Using (2.3),
we obtain after simplifications
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7.4 TOUGHER EXAMPLES

In this subsection we outline the computations of F and G for more
complicated graphs. They are only provided as examples and are logically
independent from the remainder of the paper. The arguments will therefore
be somewhat condensed.

First take for X the Cayley graph of I" = (Z/2Z) x Z with generators
0,~1)=°]", (0,1)="°7" and (1,0) = ‘<’. Geometrically, X is a doubly-
infinite two-poled ladder.

In Subsection 7.3 we computed

1 — (1 —u)?*?
VI + (1 =)y —42

the growth of circuits restricted to one pole of the ladder. A circuit in & is a
circuit in Z, before and after each step (T or |) of which we may switch to
the other pole (with a «+=) as many times as we wish, subject to the condition
that the circuit finish at the same pole as it started. This last condition is

expressed by the fact that the series we obtain must have only coefficients of
even degree in t. Thus, letting even(f) = ‘mHTf(_ﬁ, we have

Fz(u, 1) =
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1 t
60 = evn( L1111
(f) = even iz -
it is then simple to obtain F(u,t) by performing the substitution (2.3).

The following direct argument also gives F(u,f): a walk on the ladder
is obtained from a walk on a pole (i.e. on Z) by inserting before and after
every step on a pole a (possibly empty) sequence of steps from one pole to
the other. This process is expressed by performing on Fz the substitution
2 £
tst P+ tut Ut =1+

1—tu’

corresponding to replacing a step on a pole by itself, or itself followed by a
step to the other pole, or itself, a step to the other pole and a step back, etc.
But if the path had a bump at the place the substitution was performed, this
bump would disappear when a step is added from one pole to the other. In

formulas,
2
t
tur—>tu+t2+t3u—|—t4u2+--- = fu +

1 —tu’
Finally we must add at the beginning of the path a sequence of steps from
one pole to the other. Therefore we obtain

Fu, 0 = even{(l + 1 —tm)FZ([?jzf//((ll——zZ;)’t+ 1 fn)} '

As another example, consider the group Z generated by the non-free set
{+1,+2}. Geometrically, it can be seen as the set of points (2i,0) and
(2i+1,+/3) for all i € Z, with edges between all points at Euclidean distance
2 apart;-but we will not make use of this description. The circuit series of
Z. with-this'enlarged generating set will be an algebraic function of degree 4
over the rationals.

Define first the following series:

f(t) counts the walks from O to O in N;

g(t) counts the walks from O to 1 in N;

h(t) counts the walks from 1 to 1 in N.
Denote the generators of Z by 1 =T, 2 =1, —1 =| and —2 =||. The series
then satisfy the following equations, where the generators’ symbol is written
instead of ‘¢’ to make the formulas self-explanatory :

f=1+0f1+TglU+TTgl+TTAIDS,
g=r1r+751g,
h=f+flg+gllyg,
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giving a solution f that is algebraic of degree 4 over Z(1).
Then define the following series:

G counts the walks from 0 to 0 in Z;

e counts the walks from O to 1 in Z.

They satisfy the equations

G=1+420f1G+MglG+TflletNglletTglG+TThlG),
e=Glf+GNf+GIlyg

giving the solution

R 612 — 106(1 + 21)6 + 2123 + 81)6% — 61*(1 + 1§
B 4 — 7t — 362

where ¢ is a root of the equation

1 — @+ D6+ 124308 — 21+ 208 +*6* =0 .

8. COGROWTH OF NON-FREE PRESENTATIONS

We perform here a computation extending the results of Section 3.1. The
general setting, expressed in the language of group theory, is the following:
let IT be a group generated by a finite set S and let = < IT be any subgroup.
We consider the following generating series:

F(f) = Z [lﬂ;

yeEZLII

G(t) = > fwl

~words w in §
defining an element in =

where |y| is the minimal length of + in the generators S, and |w| is the usual
length of the word w. Is there some relation between these series ? In case I1
is quasi-free on §, the relation between F and G is given by Corollary 2.6.

We consider two other examples: Il quasi-free but on a set smaller than S,
and IT1 = PSL,(Z).
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