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110 L. BARTHOLDI

Solving the system, we obtain

1 + (1 - u)t l-(v- 2)t + (1 - u)(v - 2 + u)t2
F(w, t)

1 (v 2 + u)t 1 -\-1 -f- (1 — u)(v — 2 + u)t2

We then compute

1 - (v - 2)*
G(0-F(1,0-

F(0,t)

(1+0(1 - (v - 1)0 '

(1 + 0(1 — (v — 2)t + (u — 2)0)
(1 — (v — 2)0(1 + t + (v — 2)0)

7.2 Cycles

Let X Ck, the cycle on k vertices. Here, as there are 2 proper circuits
of length n for all n multiple of k (except 0), we have

1 + 0

Obtaining a closed form for G is much harder. The number of circuits of
length n is

E (E
i£Z:i=0 [k], i=n [2] ^ 2

from which, by [Gou72, 1.54], it follows that

i i i l
1 - (C + C-1)' * ^ 1-2cos(+)r

'

It is not at all obvious how to simplify the above expression. A closed-form

answer can be obtained from (2.3), namely

+2 + (+ + (i -
(2 t)2-(1- Vl -4+ (20* - (1 - x/1 -4f+ '

or, expanding,
t/2 / ;

(M' + £(l-4.T(2m
G(t)m~°

(k+l)/2

E (l — 4f2)"'(^V 2 \2m- 1

However in general this fraction is not reduced. To obtain reduced fractions
for F(u, t) (and thus for we have to consider separately the cases where

k is odd or even.



COUNTING PATHS IN GRAPHS 111

For odd k,lettingA - : 1, we obtain

F(u, t)

J>£(-r)m(l + (1 - kV)*
1 (1 w)? m=0

1 — (1 + U)t ^

^a^l + d-W"
m—0

G(t)
m 0

(i-2o(E«»<m
m=0

where

s

(-)1

(-)
ffl+i

m— 1

2

if m 0 [2].

if m 1 [2].

For even k, with k — 21,

1/2

F(m, 0
f ;

Er^P^k-^o-a-W"2"z—' — m\m

(£-l)/2_ _
(i - (i+«)2t2)( e m

K-^ra - (i - KW_i-2w)
m=0

G(t)
ra=0

(l-\)/2
(1-

1 — m

=o

,2\ra(-O

expressed as reduced fractions.

fc- •
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The first few values of F, where stands for 1 + (1 - u2)t2, are:

k F(w, t) k F(m, t)

1
1 "4~ (1 — M)t

2
1 — (1 + u)t 1 — (1 + «)T

3
(1 + (1 - k)0(D - t)

4
<N1o

(1 — (1 + M)0(D + 0 1 -(l + «)2f2

5 11(NIs1+
6

en1
(1 - (1 + u)t)(a2 4-12) (1 -(1 +u)2t2)(D2 -t2)

7 (i + (i - u)t)(n3- a2t - + 3)
Q 4 - 4D2t2+ 2t4

(1 - (1 + n)0(O3 + D2t - 2Df2 - f3)
o

(1 - (1 + «)2f2)(D2 - 2f2)

9
(I + (1 - «)«)( - 0(û3 - 3DÏ2 - i3)

10 4 - 5D2r2 + 5r4

(i - (i + «)«)( + 0(n3 - 3D + 3) (1 - (1 + «)2r2)(G4 - 3 + t4)

These rational expressions were computed and simplified using the

computer algebra program Maple.

13 Trees

Let X be the d-regular tree. Then

F(0,0= 1

as a tree has no proper circuit; while direct (i.e., without using Corollary

2.6) computation of G is more complicated. It was first performed
by Kesten [Kes59]; here we will derive the extended circuit series F(u,t) and

also obtain the answer using Corollary 2.6.

Let T be a regular tree of degree d with a fixed root *, and let Tf
be the connected component of * in the two-tree forest obtained by deleting
in T an edge at *. Let F(u, t) and F'(w, t) respectively count circuits at *
in T and TL For instance if d 2 then F' counts circuits in N and F
counts circuits in Z. For a reason that will become clear below, we make the

convention that the empty circuit is counted as ' 1 ' in F and as '«' in F'.
Then we have

1

F' u+(d- 1 )tF't

F 1 + dtF't-

1 — (d — 2 + u) tF't
1

1 — (d - 1 + u) tF't

Indeed a circuit in T' is either the empty circuit (counted as u), or a

sequence of circuits composed of, first, a step in any of d — 1 directions, then


	7.2 Cycles

