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7. Examples

We give here examples of regular graphs and when possible compute
independently the series F and G. In some cases it will be easier to compute
F, while in others it will be simpler to compute G first. In all cases, once

one of F and G has been computed, the other one can be obtained using
Corollary 2.6.

In all the examples the graphs are vertex transitive, so the choice of a is

unimportant. To simplify the computations we choose f * and the length
labelling.

7.1 Complete graphs

Let X — Kv, the complete graph on v > 3 vertices. Its degree is d v— I.
To compute F and G, choose three distinct vertices *,$,# (the choice is

unimportant as Kv is three-transitive). Define growth series

F(u, t) the growth series of circuits based at a ;

F'(w, t) the growth series of paths ir from $ to * with 7r^ # ;

F"(u,t) the growth series of paths ir from $ to * with 7r^ *.
Then

F 1 + (y-l)t [(v - 2 + |,

F' ^ t^F" + (v - 3 + U)F']

F"=t\l+{F-1)^~2+ "1
L V — 1 J

Indeed the first line states that a circuit at * is either the trivial circuit at a,
or a choice of one of v - 1 edges to another point (call it $), followed by a
path from $ to ~k,this path can first go to any vertex of the v — 2 vertices
(say (#) different from * and $, and thus contribute or go back to *
and contribute F" and a bump.

The second equation says that a path from $ to * starting by going to
# can either continue to contributing go to any of the - 3 other
vertices contributing F',orcome back to $, contributing and a bump.

The third line says that a path from $ to * starting by going to * continues
as a circuit at * ; but if the circuit is non-trivial, then one out of 1 times
a bump will be contributed.
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Solving the system, we obtain

1 + (1 - u)t l-(v- 2)t + (1 - u)(v - 2 + u)t2
F(w, t)

1 (v 2 + u)t 1 -\-1 -f- (1 — u)(v — 2 + u)t2

We then compute

1 - (v - 2)*
G(0-F(1,0-

F(0,t)

(1+0(1 - (v - 1)0 '

(1 + 0(1 — (v — 2)t + (u — 2)0)
(1 — (v — 2)0(1 + t + (v — 2)0)

7.2 Cycles

Let X Ck, the cycle on k vertices. Here, as there are 2 proper circuits
of length n for all n multiple of k (except 0), we have

1 + 0

Obtaining a closed form for G is much harder. The number of circuits of
length n is

E (E
i£Z:i=0 [k], i=n [2] ^ 2

from which, by [Gou72, 1.54], it follows that

i i i l
1 - (C + C-1)' * ^ 1-2cos(+)r

'

It is not at all obvious how to simplify the above expression. A closed-form

answer can be obtained from (2.3), namely

+2 + (+ + (i -
(2 t)2-(1- Vl -4+ (20* - (1 - x/1 -4f+ '

or, expanding,
t/2 / ;

(M' + £(l-4.T(2m
G(t)m~°

(k+l)/2

E (l — 4f2)"'(^V 2 \2m- 1

However in general this fraction is not reduced. To obtain reduced fractions
for F(u, t) (and thus for we have to consider separately the cases where

k is odd or even.
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