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7. EXAMPLES

We give here examples of regular graphs and when possible compute
independently the series ' and G. In some cases it will be easier to compute
F, while in others it will be simpler to compute G first. In all cases, once
one of I and G has been computed, the other one can be obtained using
Corollary 2.6.

In all the examples the graphs are vertex transitive, so the choice of * is
unimportant. To simplify the computations we choose = x and the length
labelling.

7.1 COMPLETE GRAPHS

Let X = K,,, the complete graph on v > 3 vertices. Its degree is d = v—1.
To compute F' and G, choose three distinct vertices «,$,# (the choice is
unimportant as K, is three-transitive). Define growth series

F(u,t) the growth series of circuits based at = ;
F'(u,t) the growth series of paths 7 from $ to * with e =#;

F"(u, 1) the growth series of paths 7 from $ to » with 7% = x.

Then
:1+w~nﬂw—mﬁ+uﬂm

3

F
F’:{FH%U~3+WF]

2
F”:4L+m—1ﬁ——i3]

v—1

Indeed the first line states that a circuit at * is either the trivial circuit at *,
or a choice of one of v — 1 edges to another point (call it $), followed by a
path from §$ to % this path can first go to any vertex of the v — 2 vertices
(say (#) different from % and $, and thus contribute F’ , Or go back to =
and contribute F” and a bump.

The second equation says that a path from $ to * starting by going to
# can either continue to %, contributing F’, go to any of the v — 3 other
vertices contributing F’, or come back to $, contributing F’ and a bump.

The third line says that a path from $ to * starting by going to % continues

as a circuit at x ; but if the circuit is non-trivial, then one out of v — 1 times
a bump will be contributed.
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Solving the system, we obtain
1+ —wt 1—@w-=2t+(1—u(v—2+ui
I —(v—24+ux L4+t4+ {0 —-ww—2+ut? '

We then compute

F(u,t) =

1 —(v—2)t
1+ —@-"Dp’
(1+01 —@—=2t+ (v —2)?)
1—@w-200+1t+ -2

G(t) = F(1,1) =

FQO,1) =

7.2 CYCLES

Let X' = Cy, the cycle on k vertices. Here, as there are 2 proper circuits
of length n for all n multiple of k (except 0), we have

1+
1 —tk

Obtaining a closed form for G is much harder. The number of circuits of

length n is
n
In = ) <i) )

i€Z:i=0 [k], i=n [2] 2

FQO,1) =

from which, by [Gou72, 1.54], it follows that

k—1

1 1 1 1
00 = 2. 7~ (C+¢ M) P 2cos(Z)t |

Ck=1 j=0 k-
It 1s not at all obvious how to simplify the above expression. A closed-form
answer can be obtained from (2.3), namely

L@+ (1-VI=4) @+ (1-VT-4)*
- (1-VI=48)" Qof - (1-VT-47)"

G(1)

or, expanding,
k)2

m( k
Q0 + H;O(l — 482 <2m>
Gl) = (k+1)/2 X '
2\ M
> (-4, )

m=1
However in general this fraction is not reduced. To obtain reduced fractions
for F(u,t) (and thus for G(#)), we have to consider separately the cases where
k 1s odd or even.
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For odd k, letting k = 2/ + 1, we obtain

£
ol (=" + (1 — P "
1+ —wt o

PO =1"0vun 2 !
S ek 4+ (1=t
m=0

J4
Z Qf,t;l(—t)m
G(f) _ m=0 . ’
(1—21) (Z aﬁ,zm)
m=0
where
( nf{l— 5 .
(—)2< mz> it m=0 [2],
2
QU = 4
ey (£ — Bl
L(_) : ( L ) ifm=11[2].
7

= 14 {—m
— < N )(_tZ)m(l . (1 . u2)t2)£—~2m
F(u,t) = m=0
e {—1—m 7
_ 242 _ 2Nme1 2N 2N\e—1—-2m
(1 (l+u)t)<m};o( . )(r)(l (1 = w)?) )
Lo fr-m
Z ( >(_t2)m
{—m\ m
G(Z) _ m=0
eu's l—1—m ’
(1 _ 412) ( )(__tZ)m
(X (. )

expressed as reduced fractions.
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The first few values of F, where O stands for 1+ (1 — u?)¢?, are:

k F(u,t) k F(u,t)
14+ (1 — u) O
1 L 2 —_—
1 — (1 +ut 1 — (1 4+ u)?f?
3 A+ —wo@ -1 4 0% — 272
(1 -0+ wn@+r) 1 — (14 u??
5 (14+ 1 —w)(@? —0r— ) 6 02 — 372
(1—1+wn@%+ 0+ 12) (1 — (1 4+ w)?2)(O% — 1)
- (14 (1 —w)(@® — 0% — 202 + ) g 0% — 4022 + 24
(1 — (1 4+ wn)(@3 + 0% — 202 — 1) (1 — (1 + w)22)(O? — 212)
9 (1 4+ (1 —wn)(@ — (@3 — 302 — A) 10 04 — 5022 + 5¢
(1 — (1 +w) @+ (@3 — 302 + 3) (1 — (1 4+ w)22)(O% — 3022 + 4)

These rational expressions were computed and simplified using the com-
puter algebra program Maple™.

7.3 TREES
Let X be the d-regular tree. Then

F0,7) =1

as a tree has no proper circuit; while direct (i.e., without using Corol-
lary 2.6) computation of G 1s more complicated. It was first performed
by Kesten [Kes59]; here we will derive the extended circuit series F(u,t) and
also obtain the answer using Corollary 2.6.

Let 7 be a regular tree of degree d with a fixed root %, and let 7~
be the connected component of % in the two-tree forest obtained by deleting
in 7 an edge at x. Let F(u,t) and F’(u,t) respectively count circuits at
in 7 and 7. For instance if d = 2 then F’ counts circuits in N and F
counts circuits in Z. For a reason that will become clear below, we make the
convention that the empty circuit is counted as ‘1’ in F and as ‘u’ in F’.
Then we have

F' = d— 1)tF't
U= ) o

1

F=1-+dtF't .
T 1—(d—-14u)tF't

Indeed a circuit in 7' 1is either the empty circuit (counted as u), or a
sequence of circuits composed of, first, a step in any of d — 1 directions, then




COUNTING PATHS IN GRAPHS 113

a ‘subcircuit’ not returning to x, then a step back to x, followed by a step in
any of d — 1 directions (counting an extra factor of u if it was the same as
before), a subcircuit, etc. If the ‘subcircuit’ is the empty circuit, it contributes
a bump, hence the convention on F’. Likewise, a circuit in 7 is either the
empty circuit (now counted as 1) or a sequence of circuits in subtrees each
isomorphic to 7.

We solve these equations to

/ 2(1 —u)
F(l—ut= |
L= u(d — ) + /(1 + u(d — )P — 4(d — 1)1’
— _ 1242
F(l —u,f) = 2(d — (A — ur*)

d—2)(1 + u(d — w)2) + d/(1 + uld — w22 —4d — D2
Using (2.3) and F(0,7) = 1 we would obtain

Lud_D(FJCm:ﬁf

2d— Dt

- (1-«1—4((1—1);‘2)2 ’

2(d— 1yt

G(r) =

or, after simplification,
2(d—1)
d—2+d\/1—4d—-1D2’
which could have been obtained by setting u =0 in F(1 — u,1).
In particular if d =2, then X = C., = Z and

2n 1
G(Z) — < >t2n =
; n V1 — 472

Note that for all d the d-regular tree X is the Cayley graph of
I' = (Z/2Z)*? with standard generating set. If d is even, X 1is also the
Cayley graph of a free group of rank d/2 generated by a free set. We have
thus computed the spectral radius of a random walk on a freely generated
free group: it is, for (Z/2Z)*" or for F,/,, equal to

2v/d — 1
7 .
Remark that for d = 2 the series F(u,t) does have a simple series

expansion. By direct expansion, we obtain the number of circuits of length
2n in Z, with m local extrema, as

G(t) =

(7.1)

n— 2
2 2<mi> if m=1[2],
([ Ilum l F(l/l, f)) _— 2
n—1 n—1 .
2(lﬂ><m7> if m=0 [2].

2
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We may even look for a richer generating series than F : let

Hav,n= 3w mm=0dm e Niw,v]([],

7r: path starting at *

where 6 denotes the graph distance. Then

H(,v,t) = F(1,t) + dF'tvF + dF'tv(d — DF'tvF + . ..
1+ F'(1, )t
T 1-d-DF( D
and as H is a sum of series counting paths between fixed vertices we obtain
H(u,v,t) from H(l,v,t) by extending (2.2) linearly:

F(l,1);

H(l —u,v,1) _ H(LU’ 1+L¢((5—u)t2)
1 — u?r? 1 4+ u(d — u)t?
We could also have started by computing

14+ vt
1 —(d— v’

the growth series of all proper paths in 7, and using (2.3) and (2.5) obtain

HO,v,1) =

H(I_W—;T-lﬁ)z 1—+/1—4(d - DA
H(:[?v?Z): H( 707?))7
(i 2d = Dt

u( 2(d—1)t )
L2 d—D@r+0% 2(d -1+
. y ( Y4 +0%) 2 )+

1+ ud—we 4d— 122 — w202 2r—00

where 00 = 14 u(d — w)t* — /(1 + u(d — w)r?)> — 4(d — 1)i2.
Recall that the growth series of a graph A at a base point % is the power

Py= > &,

VEV(X)

series

where 6 denotes the distance in A'. The series H is very general in that it

contains a lot of information on 7 , namely
o Hu,0,0) = F(u,1);
e H(,1,1) = 1—5:1); = P(t) is the growth series of 7 ;
e H(1,1,1)=1/(1 —dt) is the growth series of all paths in 7.

(Note that these substitutions yield well-defined series because for any i
there are only finitely many monomials having r-degree equal to i.) |
We can also use this series H to compute the circuit series F¢ of the cycle
of length k, that was found in the previous section. Indeed the universal cover




COUNTING PATHS IN GRAPHS 115

of a cycle is the regular tree 7 of degree 2, and circuits in C correspond
bijectively to paths in 7 from * to any vertex at distance a multiple of k.
We thus have
Fe(u,t) = Z H(u,C,1)
G:¢F=1

where the sum runs over all kth roots of unity and d =2 in H.

We consider next the following graphs: take a d-regular tree and fix a
vertex %. At «, delete e vertices and replace them by e loops. Then clearly

1+t
l—(e—1t’

F0,1) =

as all the non-backtracking paths are constrained to the e loops. Using (2.3),
we obtain after simplifications

2(d —1)

72) G = |
4 O e T2 2ed— i+ d— o/l _4d— DP

The radius of convergence of G 1s

. 1 e—1
mm{zw—:? d+ e — )
7.4 TOUGHER EXAMPLES

In this subsection we outline the computations of F and G for more
complicated graphs. They are only provided as examples and are logically
independent from the remainder of the paper. The arguments will therefore
be somewhat condensed.

First take for X the Cayley graph of I" = (Z/2Z) x Z with generators
0,~1)=°]", (0,1)="°7" and (1,0) = ‘<’. Geometrically, X is a doubly-
infinite two-poled ladder.

In Subsection 7.3 we computed

1 — (1 —u)?*?
VI + (1 =)y —42

the growth of circuits restricted to one pole of the ladder. A circuit in & is a
circuit in Z, before and after each step (T or |) of which we may switch to
the other pole (with a «+=) as many times as we wish, subject to the condition
that the circuit finish at the same pole as it started. This last condition is

expressed by the fact that the series we obtain must have only coefficients of
even degree in t. Thus, letting even(f) = ‘mHTf(_ﬁ, we have

Fz(u, 1) =
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1 t
60 = evn( L1111
(f) = even iz -
it is then simple to obtain F(u,t) by performing the substitution (2.3).

The following direct argument also gives F(u,f): a walk on the ladder
is obtained from a walk on a pole (i.e. on Z) by inserting before and after
every step on a pole a (possibly empty) sequence of steps from one pole to
the other. This process is expressed by performing on Fz the substitution
2 £
tst P+ tut Ut =1+

1—tu’

corresponding to replacing a step on a pole by itself, or itself followed by a
step to the other pole, or itself, a step to the other pole and a step back, etc.
But if the path had a bump at the place the substitution was performed, this
bump would disappear when a step is added from one pole to the other. In

formulas,
2
t
tur—>tu+t2+t3u—|—t4u2+--- = fu +

1 —tu’
Finally we must add at the beginning of the path a sequence of steps from
one pole to the other. Therefore we obtain

Fu, 0 = even{(l + 1 —tm)FZ([?jzf//((ll——zZ;)’t+ 1 fn)} '

As another example, consider the group Z generated by the non-free set
{+1,+2}. Geometrically, it can be seen as the set of points (2i,0) and
(2i+1,+/3) for all i € Z, with edges between all points at Euclidean distance
2 apart;-but we will not make use of this description. The circuit series of
Z. with-this'enlarged generating set will be an algebraic function of degree 4
over the rationals.

Define first the following series:

f(t) counts the walks from O to O in N;

g(t) counts the walks from O to 1 in N;

h(t) counts the walks from 1 to 1 in N.
Denote the generators of Z by 1 =T, 2 =1, —1 =| and —2 =||. The series
then satisfy the following equations, where the generators’ symbol is written
instead of ‘¢’ to make the formulas self-explanatory :

f=1+0f1+TglU+TTgl+TTAIDS,
g=r1r+751g,
h=f+flg+gllyg,
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giving a solution f that is algebraic of degree 4 over Z(1).
Then define the following series:

G counts the walks from 0 to 0 in Z;

e counts the walks from O to 1 in Z.

They satisfy the equations

G=1+420f1G+MglG+TflletNglletTglG+TThlG),
e=Glf+GNf+GIlyg

giving the solution

R 612 — 106(1 + 21)6 + 2123 + 81)6% — 61*(1 + 1§
B 4 — 7t — 362

where ¢ is a root of the equation

1 — @+ D6+ 124308 — 21+ 208 +*6* =0 .

8. COGROWTH OF NON-FREE PRESENTATIONS

We perform here a computation extending the results of Section 3.1. The
general setting, expressed in the language of group theory, is the following:
let IT be a group generated by a finite set S and let = < IT be any subgroup.
We consider the following generating series:

F(f) = Z [lﬂ;

yeEZLII

G(t) = > fwl

~words w in §
defining an element in =

where |y| is the minimal length of + in the generators S, and |w| is the usual
length of the word w. Is there some relation between these series ? In case I1
is quasi-free on §, the relation between F and G is given by Corollary 2.6.

We consider two other examples: Il quasi-free but on a set smaller than S,
and IT1 = PSL,(Z).
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