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106 L. BARTHOLDI

PROPOSITION 5.6 ([Ami80, Equation 4.4)]. Let X be a power series in
t over a matrix ring, such that A(0) 1. Then

detX exp(— J
where the integration is the formal linear operation on power series that maps

f to f+1/(r+ 1).

We then have, using Lemmas 5.2 and 5.3,

det M M
det -

(1 + (1 — u)t)n{ 1 — (1 — u)2t2)m 1 + (1 — u)Jt

f 1 + (1 — u)Jt — M
=expry " M,

d'

_ (_ series counting non-trivial circuits, »

exp ^ I
|engt|-1 shifted down by one vi

exp - / tr — dt

P det P
det-

1 — (1 -u)2t2 <1 ~ (1 -w)2r2)IAx)[
*

6. Second proof of Theorem 2.4

Let P — [*, f] be the set of paths in A from * to f. As we shall apply
the principle of inclusion-exclusion [Wil90], it will be helpful to compute in

n Z[[P]], the Z-module of functions from the set of paths to Z. We embed

subsets of P in II by mapping a subset to its characteristic function:

f 1 if 7r G A
PdA^xa, With (tt)xa i nL 0 otherwise.

Let B be the subset of bounded non-negative elements of n (i.e. functions /
such that there is a constant N with 0 < (7r)/ < N for all paths w% If I is a

complete labelling of X, there is an induced labelling P* : B —» k given by

(f)Cy^(7r)/7T£ •

ttCP

Note that the sum, although infinite, defines an element of k due to the fact

that £ is complete.
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Definition 6.1 (Bump Scheme). Let e G E(X) and v G V(X). A squiggle

along e is a sequence (e.ë.... .e,ë)- A squiggle at v is a squiggle along e

for some edge e such that ea v.
Let 7T (u0,pi, • be a path of length n in X. A fewm/?

for TT is a pair B((/30,ft,), hu7«)) » with

• for all ie{0,...n},a finite (possibly empty) sequence ft
(ft,i, • • • -, ft,/,-) of squiggles at vt;• for all i e {1,a squiggle 7,- along e,-.

The weight |ß| of the bump scheme B is defined as

I^GÈÊ^vI-^ + ÈN •

1=0 J=\ /= 1

Given a path 7r and a bump scheme 5 (/3,7) for 7r, we obtain a new

path TT V B G P, by setting

7T V ß ft),i • • A),f07lelft,l ' • • • ' lnenßn,\ ' • • • '

where the product denotes concatenation.

We now define a linear map 0: n —> II[[m]] by setting, for / G IT and

7r GP,
(vr)(W)= («- l)|S|(p)/,

(/9,ß) : pVB=ir

where the sum ranges over all pairs (p,B) where p G P and B is a bump
scheme for p such that p V B tt Note that the sum is finite because the

edges of p and of B form subsets of those of 7r.

LEMMA 6.2. For any path 7r we have

(6.1) h){(Xp)pwbc(7r)
•

Proo/ Say 7r — (77,..., 77) has m > 0 bumps, at indices b\,..., bm so
that tt^ 77^7. We will show that the evaluation at 7r of the left-hand side
of (6.1) yields um.

We claim there is a bijection between the subsets C of {1,... ,m} and
the pairs (pc,Bc) where pc is a path and Pc is a bump scheme for pc with
n Pc V Bc ; and further |PC| |C|.

First, take a p and a P (/3,7) such that pV B tt The path p V P is
obtained by shuffling together the edges of p and P, and this partitions the
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edges of 7r in two classes, namely (i) those coming from p and (ii) those

coming from ß and 7. Let C C {1,..., m} be the indices of the bumps bt

in 7T coming from B, i.e. such that 77. and 7r^.+] belong to the class (7/J.

One direction of the bijection is then (p,B) t—> C.

Conversely, given a subset C consider the set D {bt [/EC}. Split it in

maximal-length runs of consecutive integers Z) D\ U- • *UDt. For all runs A
do the following : to Dt {jj+1, •. • J+2k — 1} of even cardinality associate

a squiggle 7/ of length 2/c along 77 ; to Dt {/,/+ 1,,.. ,j + 2k — 2} of odd

cardinality associate a squiggle ßjj of length 2k at u/_] ; then delete in tt
the edges 77,..., 77+2*-1 • This process constructs a bump scheme B — (/?, 7)
while pruning edges of 7r, giving a path 7 with 7 V B 7r. These two
constructions are inverses, proving the claimed bijection.

It now follows that

m f \
W(Xp)<t>= L (M ~ 1)'5cl 22" ~ ' °

Ce{l,...,m} C=0

Let £' : £(<T) —> k[[w]] be defined by

1 — (ee)£(l — w)2
e

We prove Theorem 2.4 by noting that <5(£) (xp)^* that $(£) *

and that for any / E II we have (f(ß)£* K*(f)£^. To prove this last equality,
take a path n (tt\ 77) on vertices vq. 5 vn. Then

(X{tt}#)4 - l)|ß|(7r V £)*
B

where the sum ranges over all bump schemes for 7r, and

K-kTT Kv0 i\2/ • • •
-1 / 1 \2/ \û^n^vn •° 1 - (M - 1) (7777) 1 - (M - 1 (7Tw7Tn)

It is clear these last two lines are equal; for the power series expansion of
the KVi correspond to all the possible squiggle sequences ßL at Vj, and the

power series expansion of the 1/(1 — (u— l)2(7T/7fi7)^) correspond to all possible

squiggles 7/ along 77.
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