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102 L. BARTHOLDI

Similarly, letting §,., count the paths from x to y that start with the
edge e,

&x,y - 5)(5.)’ —I_ Z gx:euy )

eCE(X)e>=x
Brey =€ (Fewy + = DFew zy)
Bewzy = (Fuy + (U — DFreyy) 3
these last two lines solve to
Seew = (1= = 12@)") " ("Bowy + (u — 1)(€0)'Bny)

which we insert in the first line to obtain

V4
e
K_] Sy y — 6X , Kew K—wl ew vy -
x By yt Z 1 —(u—1%ee) e Be
eCE(X)ex=x
Thus 1if we let
4.1) ‘ & K A=Y e
. e = — evw s - € e
I = (u—1)ee) c€E(X)
we obtain
_ 1
(4.2) (K eyheyevir) = 75

and the proof is finished in the case that X is finite, because the matrix A’
is precisely that obtained from A by substituting ¢’ for /.

If X has infinitely many vertices, we approximate it, using Lemma 3.7,
by finite graphs. Denote by §7 .(£) and QS’}(,T(E’ ) the enriched path series and
path series respectively in B(x,n), and write

K. -0 = lim 32 .(0) = lim & (¢') = &)

to complete the proof.

5. GRAPHS AND MATRICES

Graphs can be studied through their adjacency and incidence matrices. We
give here the relevant definitions and obtain an extension of a theorem by
Hyman Bass [Bas92] on the lhara-Selberg zeta function. We will use power
series with coefficients in a matrix ring, and fractional expressions in matrices;
by convention, we understand ‘X/Y’ as ‘X - Y"1,
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DEFINITION 5.1. Let X be a finite graph. The edge-adjacency and
inversion matrices of X, respectively B and J, are E(X) x E(X) matrices
over Z defined by

1 if e¥ =@ 1 ife=f
Bef - { f JeJ‘ - {
0 else, 0 else.

The vertex-adjacency and degree matrices of X, respectively A and D, are
V(X) x V(X) matrices over Z defined by

deg(v) 1if v = w,
Avw=H{e€EWX)|e*=vand ¢’ =w}|, Dy, = {

0 else.

A cycle is the equivalence class of a circuit under cyclic permutation of
its edges. A proper cycle is a cycle all of whose representatives are proper
circuits. A cycle is primitive if none of its representatives can be written as ¥
for some k > 2. The cyclic bump count cbc(w) of a circuit © = (7, ..., 7,)
1S

cbe(m)={i=1,...,n|m =71},

where the edge 7,4+ 1s understood to be 7.

The matrices given above are related to paths in X as follows: Consider
first the matrix

M=1—-B-(0—-uJ).
Then the (e,f) coefficient of M~! is precisely

Z ubc(ﬂ'f)[hrl .

T =e, T =f%

This is clear because the series expansion of M~! is the sum of sequences
of (B —J)r (contributing edges with no bump) and Jut (contributing edges

with bumps), with an extra factor of u in case the path ends in f. As a
consequence,

LEMMA 5.2. Let
_1+(1—u)Jt—M_ B
Mt C1-B-0-wit’

Then the (e,f) coefficient of Xg counts the non-trivial paths starting with e
and ending at f*, with t-weight shifted one down :

(XE)e,/" — Z ubc(ﬂ)tlwl—l .

TITm =e, W =f%

X




104 L. BARTHOLDI

Likewise, consider the matrix
P=1—-At+1 —uw)D - (1 —uwlf.
The following lemma will be a consequence of the computations in the next

section.

LEMMA 5.3. Let

(-0 -wP1-P A — (1 —uDt
N Pt C1-Ar+ 0 —-wD -1 —-wb '

Xy

Then the (v,w) coefficient of Xy counts the non-trivial paths starting at v
and ending at w, with t-weight shifted one down :

(Ep )y 10 = Z ubemglml=1

T .mY¢=y, T¥=w

Proof. We will show the matrix 1+ Xyt has as (v,w) coefficient the
enriched path series from v to w. By simple calculation

1— (1 — u)?? K1
1+ Xyt = ( i = )
1—-Ar+ 0 —wyD—(1 —u)l)t2 1A

where K and A’ are given by

14+ (0 —wD—1+uwr N AKt

K = .
1— (1 — w2 ’ 1— (1 — w2

K is a diagonal matrix and the coefficient K, , is precisely K, for the length |
labelling, while the matrix A’ is the matrix of (4.1) in the previous section.
The result then follows from Equation (4.2).  []

In particular, the two matrices Xg and Xy have the same trace, as this |
trace counts all the non-trivial circuits 7 in X, with weight u>*(™7I=1

We now state and prove an extension of a theorem by Bass [Bas92, FZ98,
Nor96] :

THEOREM 5.4. Let C be a set of representatives of primitive cycles in
X, and form the zeta function of X

1
Cu, 1) = H 1 — ucbeglyl

veC
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. . —1
(The choice of representatives does not change the zeta function.) Then ¢
is a polynomial in u and t and can be expressed as

|
(5.2) — A+ 1 —wd)' (=1 — w2y VOl detp,
where
n=|{e € E(X)|e=c¢e}, 2m = |{e € E(X) | e # e} .

The special case u = n = 0 of this result was stated and proved in the
given sources. We will prove the general statement, using a result of Shimson
Amitsur :

THEOREM 5.5 (Amitsur [Ami80,RS87]). Let Xi,...,X; be square matrices
of the same dimension over an arbitrary ring. Let S contain one representative
up to cyclic permutation of words over the alphabet {1,...,k} that are
primitive, i.e. such that none of their cyclic permutations are proper powers

of a word (S is infinite as soon as k > 1). For p = ij...i, € S set
X, =X, ...X;,. Then

det(1 — (X; + -+ + X)) = | [ det@ — X,#1) |
peS

considered as an equality of power series in t over the matrix ring.

The equality (5.1) then follows; indeed, for all edges e € E(X) let X, be
the E(X) x E(X) matrix whose e-th row is the e-th row of B — (1 — u)J,
and whose other rows are 0. Then clearly 1—3" _ gxy Xet = M and, for any
sequence of edges m,

det(1 — X1y = { L= i ds a clocais
1 else,
so equality of ((u,f) and detM follows from Amitsur’s Theorem.

To prove (5.2), we use the following result, whose proof relies on Newton’s

formulas relating the trace of powers of X and the characteristic polynomial
of X:
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PROPOSITION 5.6 ([Ami80, Equation 4.4)]. Let X be a power series in
t over a matrix ring, such that X(0) = 1. Then

1-X
detX:exp(—/tr( < )dt),

where the integration is the formal linear operation on power series that maps
" to 7/ (r +1).

We then have, using Lemmas 5.2 and 5.3,

detM M

(14+ (1 —word — A —w?)yn det 1+ (1 —u)Jt

1+0—-wJt—M
:exp(-—/tr * Mb;)J dl)

— exn] — series counting non-trivial circuits, dt
= @p length shifted down by one

1 — oN242 .
— exp(—/tr( d-wn Pdt)
Pt
. P B det P
Tl —w?r (1= —u)lveol

6. SECOND PROOF OF THEOREM 2.4

Let P = [%, 1] be the set of paths in X from % to {. As we shall apply
the principle of inclusion-exclusion [Wil90], it will be helpful to compute in
IT = Z[[P]], the Z-module of functions from the set of paths to Z. We embed
subsets of P in IT by mapping a subset to its characteristic function:

1 ifreA,

PDOA xa, With(ﬂ')XA:{ .
0 otherwise.

Let B be the subset of bounded non-negative elements of II (i.e. functions f
such that there is a constant N with 0 < (7)f < N for all paths 7). If £ is a
complete labelling of X, there 1s an induced labelling ¢, : B — k given by

(e = (mfr" .
TEP

Note that the sum, although infinite, defines an element of k due to the fact
that ¢ is complete.
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