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Note that if X is not quasi-transitive, a somewhat weaker result
holds [Kit98, §7.1]: if X is transient or null-recurrent then the common
limsup is 0. If X is positive-recurrent then the limsups are normalized coeffi-
cients of X’s Perron-Frobenius eigenvector. Lemma 3.9 is not true for arbitrary
d-regular graphs: consider for instance the graph A3 described above. Its cir-
cuit series Gs, given in (3.3), has radius of convergence 1/ =2/7, and one
easily checks that all its coefficients g, satisfy g,/6" > 1/2.

We obtain the following characterization of rational series:

THEOREM 3.10. For regular quasi-transitive connected graphs X, the
following are equivalent :

1. X is finite;
2. G(¢) is a rational function of t;

3. F(t) is a rational function of t, and X is not an infinite tree.

Proof. By Corollary 2.7, Statement 1 implies the other two. By Corol-
lary 2.6, and a computation on trees done in Section 7.3 to deal with the
case F(r) = 1, Statement 2 implies 3. It remains to show that Statement 3
implies 1.

Assume that F(r) = ) f," is rational, not equal to 1. As the f, are
positive, F' has a pole, of multiplicity m, at 1/«. There is then a constant
a > 0 such that f, > a(," )a" for infinitely many values of n [GKP94,
page 341]. It follows by Lemma 3.9 that m = 1 and the graph X is finite,
of cardinality at most 1/a. [

It is not known whether the same holds for regular, or even arbitrary
connected graphs. Certainly an altogether different proof would be needed.

3.3 APPLICATION TO LANGUAGES

Let § be a finite set of cardinality d and let = be an involution on S.
A word is an element w of the free monoid S*. A language is a set L of

words. The language L is called saturated if for any u,v € $* and s € § we
have

uv € L < ussv € L;
that is to say, L is stable under insertion and deletion of subwords of the form

ss. The language L is called desiccated if no word in L contains a subword
of the form s5. Given a language L we may naturally construct its saturation
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(L), the smallest saturated language containing L, and its desiccation L, the
largest desiccated language contained in L.

Let 2 be the monoid defined by generators S and relations ss = 1 for all
ses:

(3.4) Z=(S|ss=1 VseSs).

This 1s a free product of free groups and order-two groups; if = is fixed-
point-free, X is a free group. Write ¢ for the canonical projection from S*
to X. Let k = Z[X] be its monoid ring. Then given a language L C S* we
may define its growth series ©O(L) as

O(L) = Z w®r®l e K[[] .
weEL

This notion of growth series with coefficients was introduced by Fabrice
Liardet in his doctoral thesis [Lia96], where he studied complete growth
functions of groups.

THEOREM 3.11. For any language L there holds

ol)n  OUL) (vra=mz)
1—-2 1+d-DE

(3.5)

where d = |S)|.

Proof. For any language there exists a unique minimal (possibly infinite)
automaton recognising it ([Eil74, §II1.5] is a good reference). Let X be the
minimal automaton recognising (L). Recall that this is a graph with an initial
vertex *, a set of terminal vertices 7" and a labelling ¢': E(X) — S of the
graph’s :edges such that the number of paths labelled w, starting at x and
ending ata 7 € T is 1 if w € L and 0 otherwise. Extend the labelling ¢ to
a labelling ¢: E(X) — K[[t]] by

f =1t (eel)q5 :

Because (L) is saturated, and X is minimal, (@)t = el then L is the set |
of labels on proper paths from x to some 7 € T. Choosing in turn all 7 € T
as 1, we obtain growth series F,, G, counting the formal sum of paths and
proper paths from % to 7. It then suffices to write

OL)D  Nrer Fr)  Yorer Grlimne) O (irnz)
1—-2  1-2 1+ (d— 12 14+ d-D2

L]
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The following result is well-known :

" THEOREM 3.12 (Miiller & Schupp [MS81, MS83]). Let T' be a finitely
generated group, presented as a quotient X/Z with X as in (3.4). Then O(Z)
is an algebraic series (i.e. satisfies a polynomial equation over K[t]) if and
only if 2/ is virtually free (i.e. has a normal subgroup of finite index that
is free).

It is not known whether there exists a non-virtually-free quasi-transitive
graph whose circuit series (as defined in Corollary 2.6) is algebraic.

4. FIRST PROOF OF THEOREM 2.4

We now prove Theorem 2.4 using linear algebra. We first assume the graph
has a finite number of vertices, for the computations refer to k-matrices and
k[[u]]-matrices indexed by the graph’s vertices. This proof is hinted at in
Godsil’s book as an exercise [God93, page 72]; it was also suggested to the
author by Gilles Robert.

For all pairs of vertices x,y € V(X) let

Bo®= 3 1, Fol= 3 0

mE[x,y] Telx,y]

be the path and enriched path series from x to y; for ease of notation we
will leave out the labelling £ if it is obvious from the context. Let ¢, , denote
the Kronecker delta, equal to 1 if x =y and O otherwise. For any v € k, let
[v]} denote the V(X) x V(X) matrix with zeros everywhere except at (x,y),
where it has value v. Then

6};’)) = 5x,y —f_ Z ee®gw’)z

eCE(X)  ex=x
so that if
A= Z [eﬁ]gi
eCE(X)
be the adjacency matrix of X, with labellings, then we have
(Sxy)ryevix) = L ,
1—A

an equation holding between V(X) x V(X) matrices over K.
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