Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 45 (1999)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: COUNTING PATHS IN GRAPHS

Autor: Bartholdi, Laurent

Kapitel: 3.2 The series F and G on their circle of convergence
DOI: https://doi.org/10.5169/seals-64442

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-64442
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

96 L. BARTHOLDI

3.2 THE SERIES FF AND G ON THEIR CIRCLE OF CONVERGENCE

In this subsection we study the singularities the series F' and G may have
on their circle of convergence. The smallest positive real singularity has a
special importance :

DEFINITION 3.4. For a series f(f) with positive coefficients, let p(f) denote
its radius of convergence. Then f is p(f)-recurrent if
lim f(f) = o0 .
l—w(f)f( )

Otherwise, it is p(f)-transient.

As typical examples, 1/(p — f) is p-recurrent, as are all rational series;
\/p—1 is p-transient, while 1/y/p — ¢ is not.

To study the singularities of F or G, we may suppose that x = ; indeed
in was shown in [Kes59] and [Woe83, Lemma 1] that the singularities of F
and G do not depend on the choice of x and 7. We make that assumption
for the remainder of the subsection. We will also suppose throughout that X
is d-regular, that the radius of convergence of F is 1/« and the radius of
convergence of G is 1/(dv) = 1/0.

DEFINITION 3.5. Let X be a connected graph. A proper cycle in X 1s
a proper circuit (my,...,m,) such that 7 # m,. The proper period p and
strong proper period p; are defined as follows:

p = gcd{n | there exists a proper cycle 7 in X with |n|=n},

ps = ged{n | Vx € V(X) there exists

a proper cycle 7 in B(x,n) with |r| =n},

where by convention the gcd of the empty set is co. The graph X is strongly
properly periodic if p = p;.

The period q and strong period qs; of X are defined analogously with
‘proper cycle’ replaced by ‘circuit’. X' is strongly periodic if g = g;.

THEOREM 3.6 (Cartwright [Car92]). Let X have proper period p and
strong proper period ps. Then the singularities of F on its circle of convergence

are among the
eank/pS

) kzl:---aps~
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If moreover X is strongly properly periodic, the singularities of F on its
circle of convergence are precisely these numbers.

Let X have period q and strong period qs. Then the singularities of G
on its circle of convergence are among the

€2z7rk/q3-

g

If moreover X is strongly periodic, the singularities of G on its circle of

convergence are precisely these numbers.

If X is connected and non-trivial, there is a path of even length at
every vertex (a sequence of bumps, for instance). All graphs are then either
2-periodic (if they are bipartite) or 1-periodic. If there is a constant N such
that for all x € V(X) there is at x a circuit of odd length bounded by
N, then X is strongly 1-periodic; otherwise X 1is strongly 2-periodic. The
singularities of G on its circle of convergence are then at 1/3, and also at
—1/6 if X is strongly periodic with period 2.

If X is not strongly periodic, there may be one or two singularities on
G’s circle of convergence; consider for instance the 4-regular tree, and at a
vertex % delete two or three edges replacing them by loops. The resulting
graphs A&, and A3 are still 4-regular and their circuit series, as computed
using (7.2), are respectively

Go(t) = 2
a3 Ty et/ 122
' 6
Gs3(1) =

5—18t+ 1 — 122

G, has singularities at 41/+/12 on its circle of convergence, while Gz has
only 2/7 as singularity on its circle of convergence.

Following the proof of Corollary 3.2 above, we see that if 8 < d the
singularities of F' on its circle of convergence are in bijection with those
of G, so are at 1/a and possibly —1/a, if X is strongly two-periodic. If
3 =d, though, X can have any strong proper period; consider for example
the cycles on length k studied in Section 7.2: they are strongly properly
k-periodic.

The forthcoming simple result shows how X can be approximated by
finite subgraphs.
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LEMMA 3.7. Let X be a graph and x, y two vertices in X. Let &,
and §yy be the path series and enriched path series respectively from x to
y in X, and let &, and Sz,y be the path series and enriched path series
respectively from x to y in the ball B(x,n) (they are 0 if y & B(x,n)). Then

nliH)lo ®Z’,y = ®x)y7 nli)rlgo {S;Z,y - Sxay )

Proof. Recall that lim &} = &, , means that both terms are sums of
paths, say A, and A, such that the minimal length of paths in the symmetric
difference A,/AA tends to infinity. Now the difference between &7, and &,

consists only of paths in A that exit B(x,n), and thus have length at least
2n — 6(x,y) — oco. The same argument holds for §. [J

DEFINITION 3.8. The graph X is quasi-transitive if Aut(X) acts with
finitely many orbits.

LEMMA 3.9. Let X be a regular quasi-transitive connected graph with
distinguished vertex %, and let f,, and g, denote respectively the number of
proper circuits and circuits at x of length n. Then

1/|X]| if X is finite and has odd circuits;

. . if A 1s finite
limsup g,/3" = limsupf,/a” = § 2/|X| and has only even circuits;
n—oo n— o0 ’

0 if X is infinite.

Proof. If X is finite, then J = d, the degree of X ; after a large even
number of steps, a random walk starting at x will be uniformly distributed
over X (or over the vertices at even distance of x, in case all circuits have
even length). A long enough walk then has probability 1/|X| (or 2/|X| if
all circuits have even length) of being a circuit.

If X is infinite, we consider two cases. If G(1/03) < oo, ie. G is
1/3-transient, the general term g¢,/8" of the series G(1/8) tends to O.
If G is 1/(-recurrent, then, as X is quasi-transitive, § = d by [Woe98,
Theorem 7.7]. We then approximate X by the sequence of its balls of radius R,
by Lemma 3.7:

n . n : 1 2
limg—:hm S (or)_

_ Sl
W Br T Rioo d® | Rovoo |B R)|

where we expand the circuit series of B(x,R) as ) grat".
The same proof holds for the f,. Its particular case where X is a Cayley
graph appears in [Woe83]. [
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Note that if X is not quasi-transitive, a somewhat weaker result
holds [Kit98, §7.1]: if X is transient or null-recurrent then the common
limsup is 0. If X is positive-recurrent then the limsups are normalized coeffi-
cients of X’s Perron-Frobenius eigenvector. Lemma 3.9 is not true for arbitrary
d-regular graphs: consider for instance the graph A3 described above. Its cir-
cuit series Gs, given in (3.3), has radius of convergence 1/ =2/7, and one
easily checks that all its coefficients g, satisfy g,/6" > 1/2.

We obtain the following characterization of rational series:

THEOREM 3.10. For regular quasi-transitive connected graphs X, the
following are equivalent :

1. X is finite;
2. G(¢) is a rational function of t;

3. F(t) is a rational function of t, and X is not an infinite tree.

Proof. By Corollary 2.7, Statement 1 implies the other two. By Corol-
lary 2.6, and a computation on trees done in Section 7.3 to deal with the
case F(r) = 1, Statement 2 implies 3. It remains to show that Statement 3
implies 1.

Assume that F(r) = ) f," is rational, not equal to 1. As the f, are
positive, F' has a pole, of multiplicity m, at 1/«. There is then a constant
a > 0 such that f, > a(," )a" for infinitely many values of n [GKP94,
page 341]. It follows by Lemma 3.9 that m = 1 and the graph X is finite,
of cardinality at most 1/a. [

It is not known whether the same holds for regular, or even arbitrary
connected graphs. Certainly an altogether different proof would be needed.

3.3 APPLICATION TO LANGUAGES

Let § be a finite set of cardinality d and let = be an involution on S.
A word is an element w of the free monoid S*. A language is a set L of

words. The language L is called saturated if for any u,v € $* and s € § we
have

uv € L < ussv € L;
that is to say, L is stable under insertion and deletion of subwords of the form

ss. The language L is called desiccated if no word in L contains a subword
of the form s5. Given a language L we may naturally construct its saturation
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