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96 L. BARTHOLDI

3.2 THE SERIES FF AND G ON THEIR CIRCLE OF CONVERGENCE

In this subsection we study the singularities the series F' and G may have
on their circle of convergence. The smallest positive real singularity has a
special importance :

DEFINITION 3.4. For a series f(f) with positive coefficients, let p(f) denote
its radius of convergence. Then f is p(f)-recurrent if
lim f(f) = o0 .
l—w(f)f( )

Otherwise, it is p(f)-transient.

As typical examples, 1/(p — f) is p-recurrent, as are all rational series;
\/p—1 is p-transient, while 1/y/p — ¢ is not.

To study the singularities of F or G, we may suppose that x = ; indeed
in was shown in [Kes59] and [Woe83, Lemma 1] that the singularities of F
and G do not depend on the choice of x and 7. We make that assumption
for the remainder of the subsection. We will also suppose throughout that X
is d-regular, that the radius of convergence of F is 1/« and the radius of
convergence of G is 1/(dv) = 1/0.

DEFINITION 3.5. Let X be a connected graph. A proper cycle in X 1s
a proper circuit (my,...,m,) such that 7 # m,. The proper period p and
strong proper period p; are defined as follows:

p = gcd{n | there exists a proper cycle 7 in X with |n|=n},

ps = ged{n | Vx € V(X) there exists

a proper cycle 7 in B(x,n) with |r| =n},

where by convention the gcd of the empty set is co. The graph X is strongly
properly periodic if p = p;.

The period q and strong period qs; of X are defined analogously with
‘proper cycle’ replaced by ‘circuit’. X' is strongly periodic if g = g;.

THEOREM 3.6 (Cartwright [Car92]). Let X have proper period p and
strong proper period ps. Then the singularities of F on its circle of convergence

are among the
eank/pS

) kzl:---aps~
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If moreover X is strongly properly periodic, the singularities of F on its
circle of convergence are precisely these numbers.

Let X have period q and strong period qs. Then the singularities of G
on its circle of convergence are among the

€2z7rk/q3-

g

If moreover X is strongly periodic, the singularities of G on its circle of

convergence are precisely these numbers.

If X is connected and non-trivial, there is a path of even length at
every vertex (a sequence of bumps, for instance). All graphs are then either
2-periodic (if they are bipartite) or 1-periodic. If there is a constant N such
that for all x € V(X) there is at x a circuit of odd length bounded by
N, then X is strongly 1-periodic; otherwise X 1is strongly 2-periodic. The
singularities of G on its circle of convergence are then at 1/3, and also at
—1/6 if X is strongly periodic with period 2.

If X is not strongly periodic, there may be one or two singularities on
G’s circle of convergence; consider for instance the 4-regular tree, and at a
vertex % delete two or three edges replacing them by loops. The resulting
graphs A&, and A3 are still 4-regular and their circuit series, as computed
using (7.2), are respectively

Go(t) = 2
a3 Ty et/ 122
' 6
Gs3(1) =

5—18t+ 1 — 122

G, has singularities at 41/+/12 on its circle of convergence, while Gz has
only 2/7 as singularity on its circle of convergence.

Following the proof of Corollary 3.2 above, we see that if 8 < d the
singularities of F' on its circle of convergence are in bijection with those
of G, so are at 1/a and possibly —1/a, if X is strongly two-periodic. If
3 =d, though, X can have any strong proper period; consider for example
the cycles on length k studied in Section 7.2: they are strongly properly
k-periodic.

The forthcoming simple result shows how X can be approximated by
finite subgraphs.
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LEMMA 3.7. Let X be a graph and x, y two vertices in X. Let &,
and §yy be the path series and enriched path series respectively from x to
y in X, and let &, and Sz,y be the path series and enriched path series
respectively from x to y in the ball B(x,n) (they are 0 if y & B(x,n)). Then

nliH)lo ®Z’,y = ®x)y7 nli)rlgo {S;Z,y - Sxay )

Proof. Recall that lim &} = &, , means that both terms are sums of
paths, say A, and A, such that the minimal length of paths in the symmetric
difference A,/AA tends to infinity. Now the difference between &7, and &,

consists only of paths in A that exit B(x,n), and thus have length at least
2n — 6(x,y) — oco. The same argument holds for §. [J

DEFINITION 3.8. The graph X is quasi-transitive if Aut(X) acts with
finitely many orbits.

LEMMA 3.9. Let X be a regular quasi-transitive connected graph with
distinguished vertex %, and let f,, and g, denote respectively the number of
proper circuits and circuits at x of length n. Then

1/|X]| if X is finite and has odd circuits;

. . if A 1s finite
limsup g,/3" = limsupf,/a” = § 2/|X| and has only even circuits;
n—oo n— o0 ’

0 if X is infinite.

Proof. If X is finite, then J = d, the degree of X ; after a large even
number of steps, a random walk starting at x will be uniformly distributed
over X (or over the vertices at even distance of x, in case all circuits have
even length). A long enough walk then has probability 1/|X| (or 2/|X| if
all circuits have even length) of being a circuit.

If X is infinite, we consider two cases. If G(1/03) < oo, ie. G is
1/3-transient, the general term g¢,/8" of the series G(1/8) tends to O.
If G is 1/(-recurrent, then, as X is quasi-transitive, § = d by [Woe98,
Theorem 7.7]. We then approximate X by the sequence of its balls of radius R,
by Lemma 3.7:

n . n : 1 2
limg—:hm S (or)_

_ Sl
W Br T Rioo d® | Rovoo |B R)|

where we expand the circuit series of B(x,R) as ) grat".
The same proof holds for the f,. Its particular case where X is a Cayley
graph appears in [Woe83]. [
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Note that if X is not quasi-transitive, a somewhat weaker result
holds [Kit98, §7.1]: if X is transient or null-recurrent then the common
limsup is 0. If X is positive-recurrent then the limsups are normalized coeffi-
cients of X’s Perron-Frobenius eigenvector. Lemma 3.9 is not true for arbitrary
d-regular graphs: consider for instance the graph A3 described above. Its cir-
cuit series Gs, given in (3.3), has radius of convergence 1/ =2/7, and one
easily checks that all its coefficients g, satisfy g,/6" > 1/2.

We obtain the following characterization of rational series:

THEOREM 3.10. For regular quasi-transitive connected graphs X, the
following are equivalent :

1. X is finite;
2. G(¢) is a rational function of t;

3. F(t) is a rational function of t, and X is not an infinite tree.

Proof. By Corollary 2.7, Statement 1 implies the other two. By Corol-
lary 2.6, and a computation on trees done in Section 7.3 to deal with the
case F(r) = 1, Statement 2 implies 3. It remains to show that Statement 3
implies 1.

Assume that F(r) = ) f," is rational, not equal to 1. As the f, are
positive, F' has a pole, of multiplicity m, at 1/«. There is then a constant
a > 0 such that f, > a(," )a" for infinitely many values of n [GKP94,
page 341]. It follows by Lemma 3.9 that m = 1 and the graph X is finite,
of cardinality at most 1/a. [

It is not known whether the same holds for regular, or even arbitrary
connected graphs. Certainly an altogether different proof would be needed.

3.3 APPLICATION TO LANGUAGES

Let § be a finite set of cardinality d and let = be an involution on S.
A word is an element w of the free monoid S*. A language is a set L of

words. The language L is called saturated if for any u,v € $* and s € § we
have

uv € L < ussv € L;
that is to say, L is stable under insertion and deletion of subwords of the form

ss. The language L is called desiccated if no word in L contains a subword
of the form s5. Given a language L we may naturally construct its saturation
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