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92 L. BARTHOLDI

Finally in Section 9 we show how to compute the circuit series of a free
product of graphs (an analogue of the free products of groups, via their Cayley
graph), and in Section 10 do the same for direct products of graphs.

3. APPLICATIONS TO OTHER FIELDS

The original motivation for Formula 2.2 was its implication of a well-known
result in the theory of random walks on discrete groups.

3.1 APPLICATIONS TO RANDOM WALKS ON GROUPS

In this section we show how G is related to random walks and F
to cogrowth. This will give a generalization of the main formula (1.1) to
homogeneous spaces I1/Z, where = does not have to be normal and IT is a
free product of infinite-cyclic and order-two groups. For a survey on the topic
of random walks see [MW&89,Woe94].

Throughout this subsection we will have F(¢) = F(0,t). We recall the
notion of growth of groups:

DEFINITION 3.1. Let I" be a group generated by a finite symmetric set
S. For a v € I' define its length

|v| =min{n e N : vy € §"}.
The growth series of (I',S) 1s the formal power series

frs®=>_ e N[ .

~el

Expanding fir.s () = > fut", the growth of (I',S) is
oI, S) = limsup \/ﬁ

n—2C

(this supremum-limit is actually a limit and is smaller than |S| —1).
Let R be a subset of I'. The growth series of R relative to (I',S) is the
formal power series

fit,5® = ZZM € N[[]] .

YER

Expanding f{} S)(t) = > fut", define the growth of R relative to (I',S) as

a(R; T, S) = limsup i/f, .

n— 20
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If X is a transitive right I'-set, the simple random walk on (X,S) is the
random walk of a point on X, having probability 1/|S| of moving from its
current position x to a neighbour x-s, for all s € S. Fix a point * € X, and
let p, be the probability that a walk starting at * finish at % after n moves.
We define the spectral radius (which does not depend on the choice of x) of
the random walk as

v(X,S) = limsup /p, -

A group I is quasi-free if it is a free product of cyclic groups of order 2
and oco. Equivalently, there exists a finite set S and an involution ~: § — §
such that, as a monoid,

[MM=(S|ss=1 VseSs).

IT is then said to be quasi-free on S. All quasi-free groups on S have the
same Cayley graph, which is a regular tree of degree |S]|.

Every group I' generated by a symmetric set S is a quotient of a quasi-
free group in the following way: let = be an involution on S such that for
all s € S we have the equality § = s~ ! in I". Then T is a quotient of the
quasi-free group (S|ss=1 Vse€S).

The cogrowth series (respectively cogrowth) of (I',S) is defined as the
growth series (respectively growth) of ker(w: Il — I') relative to (I, S),
where Il is a quasi-free group on S.

Associated with a group II generated by a set S and a subgroup = of II,

there is a [S|-regular graph &X' on which TI acts, called the Schreier graph
of (I, S) relative to Z. It is given by X = (V,E), with

V =

[1]

\IT
and
E=VXS§, @9N=v, WN=uvs, (vs) =ss 1);

Le. two cosets A,B are joined by at least one edge if and only if AS D B.
(This is the Cayley graph of (I1,S) if = = 1.) There is a circuit in X at
every vertex Zv € Z\IT such that s € v~!Zv for some s € §: and there is a
multiple edge from Zv to Zw in X if there are s,7 € v~ 'Zw with s #tres.



94 L. BARTHOLDI

COROLLARY 3.2 (of Corollary 2.6). Let Il be a quasi-free group, presented
as a monoid as

M=(S|ss=1 VseS8).

Let = < II be a subgroup of I1. Let v = v(E\I1,S) denote the spectral radius
of the simple random walk on Z\I1 generated by S; and o = a(E;I1,S)
denote the relative growth of Z in T1. Then we have

VI (o BT
.  wv=4{ " <¢rsn‘—7+ =) s ST

24/18]—1 ) T

Proof. Let X be the Schreier graph of (I1,S) relative to = defined above.
Fix the endpoints x = { = &, the coset of 1, and give X the length labelling.
Let G and F be the circuit and proper circuit series of A . In this setting,
expressing F(f) = ) f,1" and G(r) = > _ gnt", we see that |S|v is the growth
rate limsup /g, of circuits in X, and « the growth rate limsup+/f, of
proper circuits in X'. As both F and G are power series with non-negative
coefficients, 1/(|S|v) is the radius of convergence of G and 1/« the radius
of convergence of F. Let d = |S| and consider the function

¢ =

t
1+d— D2~

This function is strictly increasing for 0 <7 < 1/ Vd — 1, has a maximum
at t = 1/+/d —1 with (£)¢ = 1/(2\/d — 1), and is strictly decreasing for
t>1/vd—1.

First we suppose that a > +/d — 1, so ¢ is monotonously increasing on
[0,1/a]. We set u =1 in (2.2) and note that, for ¢ < 1, it says that F has
a singularity at ¢ if and only if G has a singularity at (f)¢. Now as 1/« is
the singularity of F closest to 0, we conclude by monotonicity of ¢ that the
singularity of G closest to 0 is at (1/a)¢ ; thus

1 1/

dv 1+d-1)jo? = (1/a)¢ .

Suppose now that o < /d—1. If dv < 2v/d — 1, the right-hand side
of (2.2) would be bounded for all + € R while the left-hand side diverges
at t = 1. If dv > 2+/d—1, there would be a r € [0,1/v/d— 1[ with
()¢ = dv; and F would have a singularity at t < 1/a. The only case left is

dv =2+/d — 1. []
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FIGURE 1

The function o — v relating cogrowth and spectral radius (for d = 4)

COROLLARY 3.3 (Grigorchuk [Gri78b]). Let T" be a group generated by a
symmetric finite set S, let v denote the spectral radius of the simple random
walk on T', and let « denote the cogrowth of (I',S). Then

w/15|-1< o «/lsl—1> . —
ST\ s T e if a>+/|S] =1,
2,/]5]—1

S|

(3.2)

else.

A variety of proofs exist for this result: the original [Gri78b] by Grigorchuk,
one by Cohen [Coh82], an extension by Northshield to regular graphs [Nor92],
a short proof by Szwarc [Szw89] using operator theory, one by Woess [Woe94],
etc.

Proof. Present I' as I1/=Z, with TI a quasi-free group and Z the normal
subgroup of II generated by the relators in I', and apply Corollary 3.2. [

We note in passing that if a < +/|S| — 1, then necessarily o = 0.
Equivalently, we will show that if o < +/|S| — 1, then Z =1, so the Cayley
graph X is a tree. Indeed, suppose X is not a tree, so it contains a circuit A
at . As X is transitive, there is a translate of A\ at every vertex, which we
will still write X. There are at least |S|(|S| — 1)""%(|S| —2) paths p of length
t in X starting at x such that the circuit pAp is proper; thus

a > limsup *"™V/|S|(IS] — D=2(]S| —2) = /|S[ - 1 .

1—00

In fact it is known that o > /[S| — 1 ; see [Pas93].
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