
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 45 (1999)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: COUNTING PATHS IN GRAPHS

Autor: Bartholdi, Laurent

Kapitel: 3. Applications to other fields

DOI: https://doi.org/10.5169/seals-64442

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-64442
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


92 L. BARTHOLDI

Finally in Section 9 we show how to compute the circuit series of a free

product of graphs (an analogue of the free products of groups, via their Cayley
graph), and in Section 10 do the same for direct products of graphs.

3. Applications to other fields

The original motivation for Formula 2.2 was its implication of a well-known
result in the theory of random walks on discrete groups.

3.1 Applications to random walks on groups

In this section we show how G is related to random walks and F
to cogrowth. This will give a generalization of the main formula (1.1) to

homogeneous spaces II/E, where E does not have to be normal and II is a

free product of infinite-cyclic and order-two groups. For a survey on the topic
of random walks see [MW89,Woe94].

Throughout this subsection we will have F{t) — F(0,t)- We recall the

notion of growth of groups :

Definition 3.1. Let T be a group generated by a finite symmetric set

S. For a 7 G r define its length

|y| mm{n G N : 7 G 5"}

The growth series of (r, S) is the formal power series

fir,«(0G N[[?]]
7er

Expanding fr,S)(Û ^2fntn >
the growth of (T,S) is

a(r, S) lim sup '\[Jn
n—>oc

(this supremum-limit is actually a limit and is smaller than \S\ — 1).

Let R be a subset of T. The growth series of R relative to (r, S) is the

formal power series

/(L« £Ui gn[M],
~,eR

Expanding /J S)(t) fnf * define the growth of R relative to (F, S) as

a(R\ r, S) lim sup '{/Jn



COUNTING PATHS IN GRAPHS 93

If X is a transitive right T-set, the simple random walk on (X, S) is the

random walk of a point on X, having probability 1/|S| of moving from its

current position x to a neighbour x • 5, for all s G S. Fix a point * G X, and

let pn be the probability that a walk starting at * finish at * after rc moves.

We define the spectral radius (which does not depend on the choice of *) of
the random walk as

z/(X, S) — lim sup {/p~n
n—>00

A group If is quasi-free if it is a free product of cyclic groups of order 2

and 00. Equivalently, there exists a finite set S and an involution T: S —> S

such that, as a monoid,

Yl=(S\ss=l Vs e S)

Ft is then said to be quasi-free on S. All quasi-free groups on S have the

same Cayley graph, which is a regular tree of degree \S\.

Every group T generated by a symmetric set S is a quotient of a quasi-
free group in the following way: let 7 be an involution on S such that for
all s e S we have the equality s s~l in F. Then T is a quotient of the

quasi-free group (S ] „sä 1 Vs G S).
The cogrowth series (respectively cogrowth) of (r, S) is defined as the

growth series (respectively growth) of ker(7r: n —> T) relative to (El, S),
where n is a quasi-free group on S.

Associated with a group fl generated by a set S and a subgroup 5 of If,
there is a \S\-regular graph X on which n acts, called the Schreier graph
of (11,5) relative to 5. It is given by X (V,£), with

y s\n

and

E V xS,(v,s)a=v, (v,s)u' vs, (tvö

i.e. two cosets A,Barejoined by at least one edge if and only if AS D B.
(This is the Cayley graph of (fi, S) if H 1.) There is a circuit in X at
every vertex Zv <= S\n such that s £ v~lZv for some and there is a
multiple edge from Zv to Zw in X if there are s,t ev~lZw with s ^ t £ S.



94 L. BARTHOLDI

COROLLARY 3.2 (of Corollary 2.6). Let II be a quasi-free group, presented
as a monoid as

Let E < 11 be a subgroup of IT Let v — v(E\TI, S) denote the spectral radius

of the simple random walk on H\II generated by S ; and a a(E; n, S)
denote the relative growth of E in fl. Then we have

Proof Let X be the Schreier graph of (II, S) relative to E defined above.

Fix the endpoints * f & E, the coset of 1, and give X the length labelling.
Let G and F be the circuit and proper circuit series of X. In this setting,

expressing F(t) fffntn and G(t) ffgntn, we see that \S\v is the growth
rate lim sup {fgk of circuits in X, and a the growth rate lim sup tffn of
proper circuits in X. As both F and G are power series with non-negative
coefficients, 1/(|S\v) is the radius of convergence of G and 1 ja the radius

of convergence of F. Let d \S\ and consider the function

This function is strictly increasing for 0 < t < 1 j\Jd — 1, has a maximum
at t — 1 /\fd — 1 with (f)(\) 1/(2\Jd — 1), and is strictly decreasing for
t >

First we suppose that a > Vd — 1, so f is monotonously increasing on

[0,1/a]. We set u 1 in (2.2) and note that, for t < 1, it says that F has

a singularity at t if and only if G has a singularity at (t)<j). Now as 1 /a is

the singularity of F closest to 0, we conclude by monotonicity of f that the

singularity of G closest to 0 is at (1 /a)4>\ thus

Suppose now that a < \Jd — L If dv < 2^/d — 1, the right-hand side

of (2.2) would be bounded for all t G R while the left-hand side diverges

at t 1. If dp > 2^Jd — 1, there would be a te [0, l/y/d — 1[ with
(t)(j) - dv ; and F would have a singularity at t < l/a. The only case left is

dv 2y/d — 1.

II (S I ss 1 \/s G S)

(3.1)
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The function a i-> v relating cogrowth and spectral radius (for d 4

COROLLARY 3.3 (Grigorchuk [Gri78b]). Let T be a group generated by a

symmetric finite set S, let v denote the spectral radius of the simple random

walk on F, and let a denote the cogrowth of (F, S). Then

(3.2)
+ FT.

2UISFÏ
|5|

else.

A variety of proofs exist for this result : the original [Gri78b] by Grigorchuk,
one by Cohen [Coh82], an extension by Northshield to regular graphs [Nor92],
a short proof by Szwarc [Szw89] using operator theory, one by Woess [Woe94],
etc.

Proof Present F as Fl/E, with n a quasi-free group and E the normal
subgroup of IT generated by the relators in T, and apply Corollary 3.2.

We note in passing that if a < ^/\S\ - 1, then necessarily a 0.
Equivalently, we will show that if a < y7!S| - 1, then E 1, so the Cayley
graph A is a tree. Indeed, suppose A is not a tree, so it contains a circuit À

at *. As A is transitive, there is a translate of A at every vertex, which we
will still write A. There are at least |S|(|S| - l)r—2(|5,| -2) paths p of length
t in A starting at * such that the circuit pXp is proper; thus

a > lim sup
21+1 V|5|(|5| - 1)'-2(P| - 2) ylAU •

In fact it is known that 1 ; see [Pas93].
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3.2 The series F and G on their circle of convergence

In this subsection we study the singularities the series F and G may have

on their circle of convergence. The smallest positive real singularity has a

special importance:

Definition 3.4. For a series fit) with positive coefficients, let p(f) denote

its radius of convergence. Then / is pif)-recurrent if

lim fit) oo

Otherwise, it is pif)-transient.

As typical examples, \/{p — t) is p-recurrent, as are all rational series;

p — t is p-transient, while 1 f^fp — t is not.

To study the singularities of F or G, we may suppose that * f ; indeed

in was shown in [Kes59] and [Woe83, Lemma 1] that the singularities of F
and G do not depend on the choice of * and f. We make that assumption
for the remainder of the subsection. We will also suppose throughout that X
is d -regular, that the radius of convergence of F is I jot and the radius of
convergence of G is 1 /{du) 1 /ß.

DEFINITION 3.5. Let X be a connected graph. A proper cycle in X is

a proper circuit (tti 7rn) such that Wï / 7rn. The proper period p and

strong proper period ps are defined as follows :

p gcd{n I there exists a proper cycle tt in X with \tt\ n}

ps gcd{n I Vx G V(X) there exists

a proper cycle 7r in B(x,ri) with \tt[= n}

where by convention the gcd of the empty set is oo. The graph X is strongly

properly periodic if p ps.
The period q and strong period qs of X are defined analogously with

'proper cycle' replaced by 'circuit'. X is strongly periodic if q — qs.

THEOREM 3.6 (Cartwright [Car92]). Let A have proper period p and

strong proper period ps. Then the singularities of F on its circle of convergence

are among the
e2irck/ps

k=
a
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If moreover X is strongly properly periodic, the singularities of F on its

circle of convergence are precisely these numbers.

Let X have period q and strong period qs. Then the singularities of G

on its circle of convergence are among the

eliivk/qs

—p—, k=l

If moreover X is strongly periodic, the singularities of G on its circle of
convergence are precisely these numbers.

If X is connected and non-trivial, there is a path of even length at

every vertex (a sequence of bumps, for instance). All graphs are then either

2-periodic (if they are bipartite) or 1-periodic. If there is a constant N such

that for all x G V(X) there is at x a circuit of odd length bounded by

N, then A is strongly 1-periodic; otherwise X is strongly 2-periodic. The

singularities of G on its circle of convergence are then at l/ß, and also at

— l/ß if X is strongly periodic with period 2.

If A is not strongly periodic, there may be one or two singularities on
G's circle of convergence; consider for instance the 4-regular tree, and at a

vertex * delete two or three edges replacing them by loops. The resulting
graphs X2 and X3 are still 4-regular and their circuit series, as computed
using (7.2), are respectively

G,(I)

,3.3,
v/l —12?

G3 (t)=5 - 18f + VI - 12r2
'

Gi has singularities at F\/\f\2 on its circle of convergence, while G3 has

only 2/7 as singularity on its circle of convergence.

Following the proof of Corollary 3.2 above, we see that if ß < d the

singularities of F on its circle of convergence are in bijection with those
of G, so are at 1 /a and possibly -I/a, if A is strongly two-periodic. If
ß d, though, A can have any strong proper period; consider for example
the cycles on length k studied in Section 7.2: they are strongly properly
k-periodic.

The forthcoming simple result shows how A can be approximated by
finite subgraphs.
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LEMMA 3.7. Let X be a graph and x, y two vertices in X. Let 0XJ
and be the path series and enriched path series respectively from x to

y in X, and let 0" and be the path series and enriched path series

respectively from x to y in the ball B{x)n) (they are 0 if y £ B(x,n)). Then

lim ®x,y lim $n Sx,y •

n—>00 'y n—>00 ^

Proof Recall that lim 0J <5XJ means that both terms are sums of
paths, say An and A, such that the minimal length of paths in the symmetric
difference AnAA tends to infinity. Now the difference between <3xy and (&XJ

consists only of paths in X that exit B(x, n), and thus have length at least

2n — 6(x,y) —» oo. The same argument holds for

DEFINITION 3.8. The graph X is quasi-transitive if Aut(A) acts with
finitely many orbits.

LEMMA 3.9. Let X be a regular quasi-transitive connected graph with

distinguished vertex *, and let fn and gn denote respectively the number of
proper circuits and circuits at * of length n. Then

{\/\X\
if X is finite and has odd circuits;

2/W ancfhas only"even circuits;
0 if X is infinite.

Proof If X is finite, then ß d, the degree of X ; after a large even

number of steps, a random walk starting at * will be uniformly distributed

over rT (or over the vertices at even distance of *, in case all circuits have

even length). A long enough walk then has probability \/\X\ (or 2/\X\ if
all circuits have even length) of being a circuit.

If X is infinite, we consider two cases. If G(l/ß) < oo, i.e. G is
1 /ß-transient, the general term gnlßn of the series G(l/ß) tends to 0.

If G is 1 /ß-recurrent, then, as X is quasi-transitive, ß d by [Woe98,
Theorem 7.7]. We then approximate X by the sequence of its balls of radius R,

by Lemma 3.7 :

r 9n r 9R,n r (1 or 2)
lim — lim —-1- lim ————T — 0

n—>oo ßn R,n—>00 dn R—>00 \B(*,R)\

where we expand the circuit series of B(*,R) as Yl9R^tn -

The same proof holds for the fn. Its particular case where A' is a Cayley

graph appears in [Woe83].
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Note that if X is not quasi-transitive, a somewhat weaker result

holds [Kit98, §7.1]: if X is transient or null-recurrent then the common

limsup is 0. If X is positive-recurrent then the limsups are normalized coefficients

of X's Perron-Frobenius eigenvector. Lemma 3.9 is not true for arbitrary

d-regular graphs: consider for instance the graph X3 described above. Its
circuit series G3, given in (3.3), has radius of convergence l/ß 2/7, and one

easily checks that all its coefficients gn satisfy gn/ßn >1/2.
We obtain the following characterization of rational series :

THEOREM 3.10. For regular quasi-transitive connected graphs X, the

following are equivalent :

1. X is finite ;

2. G(t) is a rational function of t ;

3. F(t) is a rational function of t, and X is not an infinite tree.

Proof By Corollary 2.7, Statement 1 implies the other two. By Corollary

2.6, and a computation on trees done in Section 7.3 to deal with the

case F(f) 1, Statement 2 implies 3. It remains to show that Statement 3

implies 1.

Assume that F{t) J2fntn is rational, not equal to 1. As the fn are
positive, F has a pole, of multiplicity in, at I/o. There is then a constant
a > 0 such that fn > for infinitely many values of n [GKP94,
page 341]. It follows by Lemma 3.9 that m 1 and the graph X is finite,
of cardinality at most I/a.

It is not known whether the same holds for regular, or even arbitrary
connected graphs. Certainly an altogether different proof would be needed.

3.3 Application to languages

Let S be a finite set of cardinality d and let T be an involution on S.
A word is an element w of the free monoid S*. A language is a set L of
words. The language L is called saturated if for any u,v £ S* and s £ S we
have

uv £ L <==> ussv £ L ;

that is to say, L is stable under insertion and deletion of subwords of the form
JÏ. The language L is called desiccated if no word in L contains a subword
of the form ss. Given a language L we may naturally construct its saturation
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(L), the smallest saturated language containing L, and its desiccation L, the

largest desiccated language contained in L.
Let X be the monoid defined by generators S and relations ss — 1 for all

s S :

(3.4) Z^(S\ss^l VseS).

This is a free product of free groups and order-two groups; if 7 is fixed-
point-free, X is a free group. Write <p for the canonical projection from S*

to X. Let k Z[X] be its monoid ring. Then given a language L C S* we

may define its growth series O(L) as

Q(L)]T k[[r]].
weL

This notion of growth series with coefficients was introduced by Fabrice
Liardet in his doctoral thesis [Lia96], where he studied complete growth
functions of groups.

THEOREM 3.11. For any language L there holds

n „ 0(0(0 ©«^»(T+(^)
K ' 1 -t2i+ (d-i)t2 '

where d |Sj.

Proof For any language there exists a unique minimal (possibly infinite)
automaton recognising it ([Eil74, §111.5] is a good reference). Let X be the

minimal automaton recognising (L). Recall that this is a graph with an initial
vertex *, a set of terminal vertices T and a labelling F : E(X) —* S of the

graph's edges such that the number of paths labelled w, starting at * and

ending at a r G T is 1 if w G L and 0 otherwise. Extend the labelling F to

a labelling I: E(X) -> k[[>]] by

el — t • (e£

Because (L) is saturated, and X is minimal, (ëf ; then L is the set

of labels on proper paths from * to some r G T. Choosing in turn all r G F

as f, we obtain growth series Fr, Gr counting the formal sum of paths and

proper paths from * to r. It then suffices to write

®CL)(t) _
Fr(t) ^ ]^d-iy2 _

®((^))(
1 -t2 ~

1 - t2 ~
1 + (d - 1 )t2 1 + (d - 1 )t2

'



COUNTING PATHS IN GRAPHS 101

The following result is well-known :

THEOREM 3.12 (Müller & Schupp [MS81, MS83]). Let T be a finitely
generated group, presented as a quotient E/S with X as in (3.4). Then 0(^)
is an algebraic series (i.e. satisfies a polynomial equation over k[7]j if and

only if Z/E is virtually free (i.e. has a normal subgroup of finite index that

is free).

It is not known whether there exists a non-virtually-free quasi-transitive

graph whose circuit series (as defined in Corollary 2.6) is algebraic.

4. First proof of Theorem 2.4

We now prove Theorem 2.4 using linear algebra. We first assume the graph
has a finite number of vertices, for the computations refer to k-matrices and

k[[w]] -matrices indexed by the graph's vertices. This proof is hinted at in
Godsil's book as an exercise [God93, page 72] ; it was also suggested to the

author by Gilles Robert.

For all pairs of vertices x,y G V(X) let

ÖM^)= 53 **> 53 wbc("v
7TG[X,H

be the path and enriched path series from x to y ; for ease of notation we
will leave out the labelling £ if it is obvious from the context. Let 6XJ denote
the Kronecker delta, equal to 1 if x y and 0 otherwise. For any v G k, let
[vfx denote the V(X) x V(X) matrix with zeros everywhere except at (jc, y),
where it has value v. Then

^.wv 3XJ + ei<ÔeuJj

eEE(W) : ea=x

so that if
A= 53

eEE(W)

be the adjacency matrix of X, with labellings, then we have

(®x,y)x#ev(X) —
y — A '

an equation holding between V(X) x V(X) matrices over k.
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