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Note that F(0,t) F(t)and F(\,t)G(t). The following equation now

holds :

F(1 — «, t) 1 -\-ii(d—u)t2

1 — u2t2 1 + u(d — u)t2

Setting u 1 in this equation reduces it to (1.2).

A generalization of the Grigorchuk Formula in a completely different

direction can be attempted : consider again a finitely generated group T, and

an exact sequence
i >5 > n—> r —> 15

where this time n is not necessarily free. Assume Yl is generated as a monoid

by a finite set S. Let again gn be the number of words of length n in LI

evaluating to 1 in T, and let fn be the number of elements of H whose

minimal-length representation as a word in S has length n. Is there again a

relation between the fn and the gn In Section 8 we derive such a relation

when n is the modular group PSL2(Z).

Again there is a combinatorial counterpart; rather than considering graphs

one considers a locally finite cellular complex JC such that all vertices have

isomorphic neighbourhoods. As before, gn counts the number of paths of length
n in the 1 -skeleton of JC between two fixed vertices ; and fn counts elements

of the fundamental groupoid, i.e. homotopy classes of paths, between two fixed
vertices whose minimal-length representation as a path in the 1 -skeleton of JC

has length n. We obtain a relation between these numbers when JC consists

solely of triangles and arcs, with no two triangles nor two arcs meeting ; these

are precisely the complexes associated with quotients of the modular group.
The original motivation for our research was the study of cogrowth in

group theory [Gri78a]; however, as it turned out, the more general problem
in graph theory has applications to other domains of mathematics, like the

Ihara-Selberg zeta function and its evaluation by Hyman Bass [Bas92].

2. Main result

Let Tf be a graph, that may have multiple edges and loops. We make
the following typographical convention for the power series that will appear :

a series in the formal variable t is written G(t), or G for short, and G(x)
refers to the series G with x substituted for t. Functions are written on the
right, with (x)/ or xf denoting / evaluated at x.
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We start by the precise definition of graph we will use:

Definition 2.1 (Graphs). A graph X is a pair of sets X (V, £") and

maps

a:E^Vt uj:E-*V, ~:E-*E
satisfying

e e, ea e"

The graph X is said to be finite if both E{X) and V(X) are finite sets.

A graph morphism <j>\ Q —* EL is a pair of maps (V(cp), E(o)) with
V((ß): V{Q) -+ VÇH) and E(<p): E{Q) EÇH) satisfying

eE(6) a V(<£) (eE(<P))a

Given an edge g G E(X), we call and As source and destination,

respectively. We say two vertices x, y are adjacent, and write x ~ y, if they

are connected by an edge, i.e. if there exists an e G is(T') with x and

y. We say two edges <?./ are consecutive if eu — fa. A loop is an edge

e with e°- — e1^.

The degree deg(x) of a vertex x is the number of incident edges :

deg(x) #{e G E{X) | ea x} #{e G E(X) \ e^ — x]

If deg(x) is finite for all x, we say X is locally finite. If deg(x) d for all
vertices x, we say X is d-regular

Note that the involution e ^ e may have fixed points. Even though the

edges of X are individually oriented, the graph X itself should be viewed

as an non-oriented graph. In case 7 has no fixed point, X can be viewed as

a geometric graph.

Definition 2.2 (Paths). A path in X is a sequence tt,

7T (u0; e]. v\. e2•.. • :en,vn)

of edges and vertices of X, with ef and éf — vt for all i G {1,... ,n}
and n > 0. The length of the path tt is the number n of edges in 7r. The

start of the path tt is 7ra vo, and its end is tt" — vn. If TTa tt" the

path tt is called a circuit at Tra. In most cases, we will omit the % from
the description of paths; they are necessary only if \tt\ =0, in which case a

starting vertex must be specified. We extend the involution 7 from edges to

paths by setting
TT
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(note that 7f is a path from 7rw to 7ra).

We denote by E*(X) the set of paths, with a partially defined multiplication

given by concatenation : if 7r and p be two paths with pa, their product

is defined as 7rp (tit, pi,..., p\P\)- For two vertices x,y G V(X)

we denote by [x, y] the set of paths from x to y. We turn V(X) into a metric

space by defining for vertices x,y G V(X) their distance

6(x,y)= nain |tt|
7T e[x,y]

The ball of radius « at a vertex x G V(X)is the subgraph n) of X with

vertex set

V(B(x,n))={)G V:< n}

and edge set

E(B(x,n)){e E(X):G V(B(x,n))}

We define aß(e) a(^),

J if eu G £(ß)

\ e else

and u;(6) aÇë).

This definition amounts to "wrapping around disconnected edges". It has

the advantage of preserving the degrees of vertices.

Definition 2.3 (Bumps, Labellings). We say a path n has a bump at i

if TT/ 7ÜTT ; if the location of the bump is unimportant we will just say 7r

has a bump. The bump count bc(7r) of a path ir is the number of bumps in
7T. A proper path in X is a path n with no bumps.

Let k be a ring. A k-labelling of the graph X is a map

I: E(X) -> k

The simplest examples of labellings are :

• the trivial labelling, given by k Z and é ml for all e G E(X) ;

• the length labelling, given by k Z[|>]] and é — t for all e G E{X).
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A k-labelling £ of A? induces a map, still written £: E*(X) —» k, by
setting ill i7T =7r17T2 • -7Tn.

The labelling £: E*(X) —> k is complete [Eil74, §VI.2] if for any vertex

x of X and any set A of paths in X starting at x there is an element (A)Z
of k, and this function Z satisfies

for all paths 7r and disjoint sets A and B (U denotes disjoint union). If A
is infinite, it is customary, though abusive, to write (A)Z as ^

If k is a topological ring (R, C, the formal power series ring Z[[?]],
etc.), completion of £ implies that tt£ —>• 0 when |7r| — 00, but the converse
does not hold. The completeness condition becomes that

be a well-defined element of k for all A ; i.e., the limit exists. Generally, we
define the following topology on k : a sequence (A,-)£ G k converges to 0 if
and only if mnv^. |tt| tends to infinity.

In the sequel of this paper all labellings will be assumed to be complete.
The length labelling is complete for locally finite graphs ; more generally, £ is

complete when k is a discretely valued ring, e£ has a positive valuation for
all edges e, and X is locally finite. An arbitrary ring k may be embedded in

k=k[M], where t has valuation 1 and k has valuation 0 ; if £ : E(X) —» k
is a labelling, we define £' : E(X) —> k' by e£ te£ ; and £' will be complete
as soon as X is locally finite. In particular the length labelling is obtained

from the trivial labelling through this construction. In all the examples we
consider the labelling is defined in this manner.

Throughout the paper we shall assume a graph X and two vertices

*, f E V(X) have been fixed. We wish to enumerate the paths, counting their
number of bumps, from * to f in X. For a given complete edge-labelling
£, consider the series

Note that in general 0 and $ also depend on the choice of * and f

({tt})E A (AU= (A)£ + E

©CQ ^ek 3(f) Y ubc(lT)ne e k[[w]]
7re[*,f] 7TE*,f]
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For all vertices x G V(X) let

s AAw5?)"'ekM'
e£E(X):ea=x

(A combinatorial interpretation of these Kx will be given in Section 6.) Let £

be a complete k-labelling of X, and define a new labelling £f : E(X) k[[w]]

by

1 — (u — l)2(eef

Then our main result is the following :

THEOREM 2.4. With the definitions of i' and Kx given above, £' is a

complete labelling and we have in k[[w]] the equality

(2.i) m Kx.mf).

We now explicit the definitions and main result for the length labelling on

a locally finite graph.

Definition 2.5 (Path Series). The integer-valued series

g(O Y tH e N[W]
7T6[*, t]

is called the path series of (X,*, f). The series

F(u,t)yy "bc(AWe N[w][[f]] C

is called the enriched path series of (X,*, j). Its specialization F(0,t) is

called the proper path series of (Af,*, f).
In case * f, we will call G the circuit series of (X, *) and F the

enriched circuit series of (X,*). The circuit series is often called the Green

function of the graph X.

Note that F(w, t) lies in N[m][{/|] because the number of bumps on a path
is smaller than its length, so all monomials in the sum have a u-degree smaller
than their t-degree; hence for any fixed t-degree there are only finitely many
monomials with same t-degree, because X is locally finite.
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Expressed in terms of length labellings, our main theorem then gives the

following result:

(2.2)

COROLLARY 2.6. Suppose X is a d-regular graph. Then we have

F(1 -u,t) _
G{ 1 -\-u(d—u)t2

1 — u2t2 1 + u(d — u)t2

Proof Because X is regular, the Kx defined above do not depend on x
and are all equal to

K=(l-d- ^
1 — (u — 1 )2t2 J 1 -f (d — 1 + u){ 1 — u)t2

thus Theorem 2.4 reads

I-YL__=:0).
Now writing $(e ^ t) F(w, 0 and 0® h-> ®) G(®) completes the

proof.

The special case u 1 of this formula appears as an exercise in [God93,

page 72].
The meaning of the corollary is that, for regular graphs, the richer two-

variable generating series F(u,f) can be recovered from the simpler G(t).
Conversely, G can be recovered from F, for instance because G(t) F(l,t).
Remember it is valid to substitute 1 for u in F, because for any fixed t -degree

only finitely many monomials with that t-degree occur in F. In fact, much

more is true, as we have the equality

(l —a/1—4(1—m) (d-\+u) z2)2

4(i-«)(d-i+«)z2 J 1 - a/1 -4(1 - w)(ûf- 1 +M)Z2
G(z) — ; x 2 u>

1
(l — yj1—4(1— u) (d—\-\-u) z2) ^ 2(1 u) (d \ F u) z

^
4(d—1+u)2 z2

or after simplification

2(J - 1 + m)
(2.3) G(z)

— 2 T w T (^/ T u)\J 1 — 4(1 — u) {d — 1 T u) z2

1 - a/1 - 4(1 - u)(d - 1 +
x F\u, -

2(1 — u) (d — 1 + u) z 7

where both sides are to be understood as power series in N[[w, z]] that actually
reside in N[[z]]. Then for any value (say, in C) of w we obtain an expression
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of G in terms of F(w,—). Of particular interest is the case u — 0, where

(2.3) specializes to

2(d -1) / 1 - y/l -4(d- l)z2\
(24) W-'*
This equation appears in a slightly different form in [Gri78a],

Similarly, we have in N[[f,z,z-1]] the equality

2
(2'5) G(Z)

2 - Jtz+ dzy/<Pfl + 4 - 4r/z

/ dt - JcPt2 +4 - 4r/z \
xF(! V__ L,,).

Beware though that (2.5) holds for formal variables z and t ; if we were to

substitute a real number for F then the resulting series G(z) would converge

absolutely for 1+(/_1)f2 < z < t < p, where p is the radius of convergence

of F(l, -) Gs and in particular not in a neighbourhood of 0.

The equalities (2.3) and (2.5) are easily derived from (2.2) by setting

2 l+u{d-u)f-
and solving for 1 and m.

COROLLARY 2.7. In the setting described above:

• If X is finite, then both F and G are rational series.

• If G is rational, then F is rational too.

• F is algebraic if and only if G is algebraic.

The proofs are immediate and follow from the explicit form of (2.2). The

converse of the first statement of the preceding corollary will be proved in
Section 3.2. The last statement appears in [Gri78a] and [GH97].

In the following section we draw some applications to other fields :

group theory and language theory. We give applications of Theorem 2.4 and

Corollary 2.6 to some examples of graphs in Section 7, and a derivation of a

"cogrowth formula" (as that of Subsection 3.1) for a non-free presentation in
Section 8.

We give two proofs of the main result in Sections 4 and 6. The first one,
shorter, uses a reduction to finite graphs and their adjacency matrices. The
second one is combinatorial and uses the inclusion-exclusion principle. Using
the first proof, we obtain in Section 5 an extension of a result by Yasutaka
Ihara.
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Finally in Section 9 we show how to compute the circuit series of a free

product of graphs (an analogue of the free products of groups, via their Cayley
graph), and in Section 10 do the same for direct products of graphs.

3. Applications to other fields

The original motivation for Formula 2.2 was its implication of a well-known
result in the theory of random walks on discrete groups.

3.1 Applications to random walks on groups

In this section we show how G is related to random walks and F
to cogrowth. This will give a generalization of the main formula (1.1) to

homogeneous spaces II/E, where E does not have to be normal and II is a

free product of infinite-cyclic and order-two groups. For a survey on the topic
of random walks see [MW89,Woe94].

Throughout this subsection we will have F{t) — F(0,t)- We recall the

notion of growth of groups :

Definition 3.1. Let T be a group generated by a finite symmetric set

S. For a 7 G r define its length

|y| mm{n G N : 7 G 5"}

The growth series of (r, S) is the formal power series

fir,«(0G N[[?]]
7er

Expanding fr,S)(Û ^2fntn >
the growth of (T,S) is

a(r, S) lim sup '\[Jn
n—>oc

(this supremum-limit is actually a limit and is smaller than \S\ — 1).

Let R be a subset of T. The growth series of R relative to (r, S) is the

formal power series

/(L« £Ui gn[M],
~,eR

Expanding /J S)(t) fnf * define the growth of R relative to (F, S) as

a(R\ r, S) lim sup '{/Jn
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