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Note that F(0,7) = F(t) and F(1,f) = G(#). The following equation now
holds :
F(1 —u,rt) B G(m)
1 — w22 14+uld—wt

Setting u# = 1 in this equation reduces it to (1.2).

A generalization of the Grigorchuk Formula in a completely different
direction can be attempted: consider again a finitely generated group I, and
an exact sequence

| —E2-——T—T—1,

where this time I1 is not necessarily free. Assume IT is generated as a monoid
by a finite set S. Let again g, be the number of words of length n in II
evaluating to 1 in I', and let f, be the number of elements of = whose
minimal-length representation as a word in S has length n. Is there again a
relation between the f, and the g, ? In Section 8 we derive such a relation
when II is the modular group PSL,(Z).

Again there is a combinatorial counterpart; rather than considering graphs
one considers a locally finite cellular complex K such that all vertices have
1somorphic neighbourhoods. As before, g, counts the number of paths of length
n in the 1-skeleton of K between two fixed vertices; and f,, counts elements
of the fundamental groupoid, i.e. homotopy classes of paths, between two fixed
vertices whose minimal-length representation as a path in the [-skeleton of K
has length n. We obtain a relation between these numbers when C consists
solely of triangles and arcs, with no two triangles nor two arcs meeting; these
are precisely the complexes associated with quotients of the modular group.

The original motivation for our research was the study of cogrowth in
group theory [Gri78a]; however, as it turned out, the more general problem
in graph theory has applications to other domains of mathematics, like the
Ihara-Selberg zeta function and its evaluation by Hyman Bass [Bas92].

2. MAIN RESULT

Let X' be a graph, that may have multiple edges and loops. We make
the following typographical convention for the power series that will appear :
a series in the formal variable ¢ is written G(¢), or G for short, and G(x)
refers to the series G with x substituted for 7. Functions are written on the
right, with (x)f or ¥ denoting f evaluated at x.
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We start by the precise definition of graph we will use:

DEFINITION 2.1 (Graphs). A graph X is a pair of sets X = (V,E) and
maps
a.E—V, w:E—V, T E—E
satisfying

e=ce, e* =ev .

The graph A" is said to be finite if both E(X) and V(X&) are finite sets.

A graph morphism ¢: G — H is a pair of maps (V(@),E(¢)) with
V(p): V(G) — V(H) and E(¢): E(G) — E(H) satisfying

eE(¢) = e E(9), e*V(¢) = (eE(¢)™ .

Given an edge e € E(X), we call e* and e¥ e’s source and destination,
respectively. We say two vertices x,y are adjacent, and write x ~ y, if they
are connected by an edge, i.e. if there exists an e € E(X) with ¢* = x and
e“ = y. We say two edges e,f are consecutive if e* = f%. A loop is an edge
e with e® = e“.

The degree deg(x) of a vertex x is the number of incident edges:

deg(x) =#{e € E(X) | e =x} =#{e € E(X) | ¢ = x} .

If deg(x) is finite for all x, we say X is locally finite. If deg(x) = d for all
vertices x, we say X is d-regular.

Note that the involution e — e may have fixed points. Even though the
edges of A are individually oriented, the graph A&  itself should be viewed
as an non-oriented graph. In case - has no fixed point, X can be viewed as
a geometric graph.

DEFINITION 2.2 (Paths). A path in X 1is a sequence T,

T = (UO;e]7U1;eZ;' c+ 5 €ny Upn)
of edges and vertices of X', with e = v;_| and ¢ =v; forall i € {1,...,n}
and n > 0. The length of the path 7 is the number n of edges in 7. The
start of the path 7 is 7#® = vg, and its end 1S 7 = v,. If 7% = 7%, the

path 7 is called a circuit at 7*. In most cases, we will omit the v; from
the description of paths; they are necessary only if |x| = 0, in which case a
starting vertex must be specified. We extend the involution - from edges to
paths by setting

T = (Un; €ny - - -, V1, €1, Vo)
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(note that 7 is a path from 7% to 7).

We denote by E*(X) the set of paths, with a partially defined multiplication
given by concatenation: if 7 and p be two paths with 7 = p%, their product
is defined as 7p = (T, ..., Mx|, P11 Plp|)- FOr tWoO vertices x,y € V(X)
we denote by [x,y] the set of paths from x to y. We turn V(&) into a metric
space by defining for vertices x,y € V(&) their distance

6(x,y) = min || .

The ball of radius n at a vertex x € V(X) is the subgraph B(x,n) of X with
vertex set

V(B(x,n)) = {y € V(X) : 6(x,y) < n}
and edge set
E(B(x,n) = {e € E(X) : ¢* € V(B(x,n))} .
We define as(e) = afe),

{ e if e¥ € E(B)

e else,

and w(e) = a(e).

This definition amounts to “wrapping around disconnected edges”. It has
the advantage of preserving the degrees of vertices.

DEFINITION 2.3 (Bumps, Labellings). We say a path 7 has a bump at i
if m; =7 ; if the location of the bump is unimportant we will just say =
has a bump. The bump count bc(m) of a path 7 is the number of bumps in
7. A proper path in X 1s a path 7 with no bumps.

Let k be a ring. A k-labelling of the graph A is a map
¢ E(X)—Kk.

The simplest examples of labellings are:
o the rrivial labelling, given by k =7 and e’ =1 for all ¢ € E(X);

* the length labelling, given by k = Z[[t]] and ¢ =t for all e € E(X).
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A Kk-labelling ¢ of X induces a map, still written /: E*(X) — k, by

setting
¢ ¢_L ¢

T =TTy .. T, .

The labelling £: E*(X) — k is complete [Eil74, § VI.2] if for any vertex
x of X and any set A of paths in X starting at x there is an element (A)X
of k, and this function X satisfies

{rHZ = =* | (AU BT = (A + (B)X

for all paths 7 and disjoint sets A and B (LJ denotes disjoint union). If A

is infinite, it is customary, though abusive, to write (A)X as Zwe 5 7.

If k is a topological ring (R, C, the formal power series ring Z[[z]],
etc.), completion of £ implies that ¢ — 0 when || — oo, but the converse
does not hold. The completeness condition becomes that

A)Y =  lim t
( ) BCA, |B|<oo7rZ€;g

be a well-defined element of k for all A ; i.e., the limit exists. Generally, we
define the following topology on k: a sequence (A;)X € k converges to O if
and only if min,¢ca, |7| tends to infinity.

In the sequel of this paper all labellings will be assumed to be complete.
The length labelling is complete for locally finite graphs; more generally, ¢ is
complete when k is a discretely valued ring, e has a positive valuation for
all edges e, and X is locally finite. An arbitrary ring k may be embedded in
k’ = K[[¢]], where ¢ has valuation 1 and k has valuation 0; if ¢: E(X) — k
is a labelling, we define ¢': E(X) — Kk’ by ¢ = e’ and ¢’ will be complete
as soon as X is locally finite. In particular the length labelling is obtained
from the trivial labelling through this construction. In all the examples we
consider the labelling is defined in this manner.

Throughout the paper we shall assume a graph X and two vertices
*,T € V(X) have been fixed. We wish to enumerate the paths, counting their
number of bumps, from * to t in A. For a given complete edge-labelling
¢, consider the series

s = Y wlek, FO= ) uOr’cku].

TE[*,T] mE[*,T]

Note that in general & and § also depend on the choice of x and f.
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For all vertices x € V(X) let

(u— D) !
S = (1 -2 L= (u— 1)2(ez)~’f) < Klludl

eCE(X): e%=x

(A combinatorial interpretation of these K, will be given in Section 6.) Let /
be a complete k-labelling of &', and define a new labelling ¢ : E(X) — K[[u]]
by

I 1

¢
f— Kew .
I~ - 12ee)’

e

Then our main result is the following:

THEOREM 2.4. With the definitions of ¢ and K, given above, {' is a
complete labelling and we have in K[[u]] the equality

2.1) 3 =K, - &)

We now explicit the definitions and main result for the length labelling on
a locally finite graph.

DEFINITION 2.5 (Path Series). The integer-valued series

Gty = Y ™ eN[[t]]

e[, 1]

is called the path series of (X,,7{). The series

Fu,p= Y u®™d € N[u][[]] € N[u, 1]

mTelx,1]

is called the enriched path series of (X,x,7). Its specialization F(0,7) is
called the proper path series of (X, x, 7).

In case x = 7, we will call G the circuit series of (X,x) and F the
enriched circuit series of (X, x). The circuit series is often called the Green
function of the graph AX.

Note that F(u,t) lies in N[u][[¢]] because the number of bumps on a path
is smaller than its length, so all monomials in the sum have a u-degree smaller
than their f-degree; hence for any fixed 7-degree there are only finitely many

monomials with same 7-degree, because & is locally finite.
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Expressed in terms of length labellings, our main theorem then gives the
following result:

COROLLARY 2.6. Suppose X is a d-regular graph. Then we have

FQ—u,t)  Glima—r)

22 _ |
(2.2) 1 — u?s? 1 4+ u(d — u)t?

Proof. Because X 1is regular, the K, defined above do not depend on x
and are all equal to

_ 2 - _ 0242
Kz(l—d (u— 1)t > _ I — (1 —ut ;
1 — (u— 1) 14+(d—1+u(l —ur
thus Theorem 2.4 reads
tK A
S(e!—»z‘):K-Qﬁ(eH (i = {k)) :

Now writing §(e — 1) = F(u,t) and &(e — &) = G(®) completes the
proof. [

The special case u = 1 of this formula appears as an exercise in [God93,
page 72].

The meaning of the corollary is that, for regular graphs, the richer two-
variable generating series F(u,t) can be recovered from the simpler G(f).
Conversely, G can be recovered from F, for instance because G(t) = F(1,t).
Remember it is valid to substitute 1 for u in F, because for any fixed r-degree
only finitely many monomials with that 7-degree occur in F. In fact, much
more is true, as we have the equality

2
1=/ 1=4(1—u) (@~ 1+0) 2)
1+ ( I B Y F(u 1~\/1—4(1~u)(d~1+u)22)

(1= =40 -0 d— 1w 22) 20 ~uyd—1+u)z
Hd—14u)? 22

G(z) =

1 —

or after simplification
2(d — 1+ u)
d—2+u+d+u/1—401 —u(d—-14u)z2
1—+/1—4(1 —uyd—1 +u)z2)
21 —u)(d— 1+ u)z

where both sides are to be understood as power series in N[[u, z]] that actually
reside in N[[z]]. Then for any value (say, in C) of u we obtain an expression

(23) GQ@) =

xF(u,

m.___.“ L



COUNTING PATHS IN GRAPHS 91

of G in terms of F(u,—). Of particular interest is the case u = 0, where
(2.3) specializes to

4 G(z) =
o & d—2+d\/1—4d—- 12

2d - 1) 1 — /1 —4(d—1)z2
F<O 2(d — 1)z ) '

This equation appears in a slightly different form in [Gri78al].
Similarly, we have in N[[z,z,z7 1] the equality

2

2.5) G(z) =
Eo iR 2 — d2tz +dz/d* P + 4 — 4tz

dr — \/d*1> +4 — 4t
cp(1- VLA
2t

Beware though that (2.5) holds for formal variables z and t; if we were to
substitute a real number for ¢, then the resulting series G(z) would converge
absolutely for WJL—W <z <t < p, where p is the radius of convergence
of F(1,—) = G, and in particular not in a neighbourhood of 0.

The equalities (2.3) and (2.5) are easily derived from (2.2) by setting
2= Tra—ne and solving for ¢ and u.

COROLLARY 2.7. In the setting described above :
o If X is finite, then both F and G are rational series.
e If G is rational, then F is rational too.

e F is algebraic if and only if G is algebraic.

The proofs are immediate and follow from the explicit form of (2.2). The
converse of the first statement of the preceding corollary will be proved in
Section 3.2. The last statement appears in [Gri78a] and [GH97].

In the following section we draw some applications to other fields:
group theory and language theory. We give applications of Theorem 2.4 and
Corollary 2.6 to some examples of graphs in Section 7, and a derivation of a

“cogrowth formula” (as that of Subsection 3.1) for a non-free presentation in
Section 8.

We give two proofs of the main result in Sections 4 and 6. The first one,
shorter, uses a reduction to finite graphs and their adjacency matrices. The
second one is combinatorial and uses the inclusion-exclusion principle. Using

the first proof, we obtain in Section 5 an extension of a result by Yasutaka
Ihara.
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Finally in Section 9 we show how to compute the circuit series of a free
product of graphs (an analogue of the free products of groups, via their Cayley
graph), and in Section 10 do the same for direct products of graphs.

3. APPLICATIONS TO OTHER FIELDS

The original motivation for Formula 2.2 was its implication of a well-known
result in the theory of random walks on discrete groups.

3.1 APPLICATIONS TO RANDOM WALKS ON GROUPS

In this section we show how G is related to random walks and F
to cogrowth. This will give a generalization of the main formula (1.1) to
homogeneous spaces I1/Z, where = does not have to be normal and IT is a
free product of infinite-cyclic and order-two groups. For a survey on the topic
of random walks see [MW&89,Woe94].

Throughout this subsection we will have F(¢) = F(0,t). We recall the
notion of growth of groups:

DEFINITION 3.1. Let I" be a group generated by a finite symmetric set
S. For a v € I' define its length

|v| =min{n e N : vy € §"}.
The growth series of (I',S) 1s the formal power series

frs®=>_ e N[ .

~el

Expanding fir.s () = > fut", the growth of (I',S) is
oI, S) = limsup \/ﬁ

n—2C

(this supremum-limit is actually a limit and is smaller than |S| —1).
Let R be a subset of I'. The growth series of R relative to (I',S) is the
formal power series

fit,5® = ZZM € N[[]] .

YER

Expanding f{} S)(t) = > fut", define the growth of R relative to (I',S) as

a(R; T, S) = limsup i/f, .

n— 20
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