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COUNTING PATHS IN GRAPHS

by Laurent BARTHOLDI

ABSTRACT. We give a simple combinatorial proof of a formula that extends a
result by Grigorchuk [Gri78a, Gri78b] relating cogrowth and spectral radius of random
walks. Our main result is an explicit equation determining the number of ‘bumps’ on
paths in a graph: in a d-regular (not necessarily transitive) non-oriented graph lelt tl})e

engt

series G(r) count all paths between two fixed points weighted by their length ¢ ,
and F(u,1) count the same paths, weighted as y™™r ofbumpsgensth “Thepn one has
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We then derive the circuit series of ‘free products’ and ‘direct products’ of graphs.
We also obtain a generalized form of the Ihara-Selberg zeta function [Bas92, FZ98].

1. INTRODUCTION

Let I'=Fgs/N be a group generated by a finite set S, where Fg denotes
the free group on §. Let f, be the number of elements of the normal subgroup
N of Fs whose minimal representation as words in SUS™! has length n ; let
g, be the number of (not necessarily reduced) words of length n in SUS™!
that evaluate to 1 in I'; and let d = [SUS™!| = 2|S|. The numbers
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are called the cogrowth and spectral radius of (I',S). The Grigorchuk
Formula [Gri78b] states that
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d

(1.1)
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We generalize this result to a somewhat more general setting: we replace
the group I' by a regular graph X', i.e. a graph with the same number of edges
at each vertex. Fix a vertex x of A ; let g, be the number of circuits (closed
sequences of edges) of length n at x and let f, be the number of circuits of
length n at x with no backtracking (no edge followed twice consecutively).
Then the same equation holds between the growth rates of f, and g,.

To a group I' with fixed generating set one associates its Cayley graph
X (see Subsection 3.1). X is a d-regular graph with distinguished vertex
* = 1; paths starting at x in X are in one-to-one correspondence with words
in SUS™!, and paths starting at x with no backtracking are in one-to-one
correspondence with elements of Fg. A circuit at = in X is then precisely
a word evaluating to 1 in I', and a circuit without backtracking represents
precisely one element of N. In this sense results on graphs generalize results
on groups. The converse would not be true: there are even graphs with
a vertex-transitive automorphism group that are not the Cayley graph of a
group [Pas93].

Even more generally, we will show that, rather than counting circuits and
proper circuits (those without backtracking) at a fixed vertex, we can count
paths and proper paths between two fixed vertices and obtain the same formula
relating their growth rates.

These relations between growth rates are consequences of a stronger result,
expressed in terms of generating functions. Define the formal power series

FOy=> ful",  G@O)=) gut".
n=0 n=0
Then assuming X is d-regular we have
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This- equation relates F and G, and so relates a fortiori their radii of
convergence, which are 1/a and 1/(dv). We re-obtain thus the Grigorchuk
Formula.

Finally, rather than counting paths and proper paths between two fixed
vertices, we can count, for each m > 0, the number of paths with m
backtrackings, i.e. with m occurrences of an edge followed twice in a row.
Letting f,,, be the number of paths of length n with m backtrackings,
consider the two-variable formal power series

(1.2)

F(u,t) = i Jun e .

m,n=0
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Note that F(0,7) = F(t) and F(1,f) = G(#). The following equation now
holds :
F(1 —u,rt) B G(m)
1 — w22 14+uld—wt

Setting u# = 1 in this equation reduces it to (1.2).

A generalization of the Grigorchuk Formula in a completely different
direction can be attempted: consider again a finitely generated group I, and
an exact sequence

| —E2-——T—T—1,

where this time I1 is not necessarily free. Assume IT is generated as a monoid
by a finite set S. Let again g, be the number of words of length n in II
evaluating to 1 in I', and let f, be the number of elements of = whose
minimal-length representation as a word in S has length n. Is there again a
relation between the f, and the g, ? In Section 8 we derive such a relation
when II is the modular group PSL,(Z).

Again there is a combinatorial counterpart; rather than considering graphs
one considers a locally finite cellular complex K such that all vertices have
1somorphic neighbourhoods. As before, g, counts the number of paths of length
n in the 1-skeleton of K between two fixed vertices; and f,, counts elements
of the fundamental groupoid, i.e. homotopy classes of paths, between two fixed
vertices whose minimal-length representation as a path in the [-skeleton of K
has length n. We obtain a relation between these numbers when C consists
solely of triangles and arcs, with no two triangles nor two arcs meeting; these
are precisely the complexes associated with quotients of the modular group.

The original motivation for our research was the study of cogrowth in
group theory [Gri78a]; however, as it turned out, the more general problem
in graph theory has applications to other domains of mathematics, like the
Ihara-Selberg zeta function and its evaluation by Hyman Bass [Bas92].

2. MAIN RESULT

Let X' be a graph, that may have multiple edges and loops. We make
the following typographical convention for the power series that will appear :
a series in the formal variable ¢ is written G(¢), or G for short, and G(x)
refers to the series G with x substituted for 7. Functions are written on the
right, with (x)f or ¥ denoting f evaluated at x.
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