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COUNTING PATHS IN GRAPHS

by Laurent BARTHOLDI

ABSTRACT. We give a simple combinatorial proof of a formula that extends a
result by Grigorchuk [Gri78a, Gri78b] relating cogrowth and spectral radius of random
walks. Our main result is an explicit equation determining the number of ‘bumps’ on
paths in a graph: in a d-regular (not necessarily transitive) non-oriented graph lelt tl})e

engt

series G(r) count all paths between two fixed points weighted by their length ¢ ,
and F(u,1) count the same paths, weighted as y™™r ofbumpsgensth “Thepn one has

F(] — U, t) . G( 1+u((;—u)12)
1 —uw22  14ud—wr’

We then derive the circuit series of ‘free products’ and ‘direct products’ of graphs.
We also obtain a generalized form of the Ihara-Selberg zeta function [Bas92, FZ98].

1. INTRODUCTION

Let I'=Fgs/N be a group generated by a finite set S, where Fg denotes
the free group on §. Let f, be the number of elements of the normal subgroup
N of Fs whose minimal representation as words in SUS™! has length n ; let
g, be the number of (not necessarily reduced) words of length n in SUS™!
that evaluate to 1 in I'; and let d = [SUS™!| = 2|S|. The numbers

_ 1
cy:hmsup{/ﬁ, y:C—Zlimsup{/ﬂ

n—oo n— 00

are called the cogrowth and spectral radius of (I',S). The Grigorchuk
Formula [Gri78b] states that

d—1 o N d— ;
2/d—1
d

(1.1)

else .
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We generalize this result to a somewhat more general setting: we replace
the group I' by a regular graph X', i.e. a graph with the same number of edges
at each vertex. Fix a vertex x of A ; let g, be the number of circuits (closed
sequences of edges) of length n at x and let f, be the number of circuits of
length n at x with no backtracking (no edge followed twice consecutively).
Then the same equation holds between the growth rates of f, and g,.

To a group I' with fixed generating set one associates its Cayley graph
X (see Subsection 3.1). X is a d-regular graph with distinguished vertex
* = 1; paths starting at x in X are in one-to-one correspondence with words
in SUS™!, and paths starting at x with no backtracking are in one-to-one
correspondence with elements of Fg. A circuit at = in X is then precisely
a word evaluating to 1 in I', and a circuit without backtracking represents
precisely one element of N. In this sense results on graphs generalize results
on groups. The converse would not be true: there are even graphs with
a vertex-transitive automorphism group that are not the Cayley graph of a
group [Pas93].

Even more generally, we will show that, rather than counting circuits and
proper circuits (those without backtracking) at a fixed vertex, we can count
paths and proper paths between two fixed vertices and obtain the same formula
relating their growth rates.

These relations between growth rates are consequences of a stronger result,
expressed in terms of generating functions. Define the formal power series

FOy=> ful",  G@O)=) gut".
n=0 n=0
Then assuming X is d-regular we have

Fo) _ Glaw)

1-2 14+d-D" |

This- equation relates F and G, and so relates a fortiori their radii of
convergence, which are 1/a and 1/(dv). We re-obtain thus the Grigorchuk
Formula.

Finally, rather than counting paths and proper paths between two fixed
vertices, we can count, for each m > 0, the number of paths with m
backtrackings, i.e. with m occurrences of an edge followed twice in a row.
Letting f,,, be the number of paths of length n with m backtrackings,
consider the two-variable formal power series

(1.2)

F(u,t) = i Jun e .

m,n=0




B
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Note that F(0,7) = F(t) and F(1,f) = G(#). The following equation now
holds :
F(1 —u,rt) B G(m)
1 — w22 14+uld—wt

Setting u# = 1 in this equation reduces it to (1.2).

A generalization of the Grigorchuk Formula in a completely different
direction can be attempted: consider again a finitely generated group I, and
an exact sequence

| —E2-——T—T—1,

where this time I1 is not necessarily free. Assume IT is generated as a monoid
by a finite set S. Let again g, be the number of words of length n in II
evaluating to 1 in I', and let f, be the number of elements of = whose
minimal-length representation as a word in S has length n. Is there again a
relation between the f, and the g, ? In Section 8 we derive such a relation
when II is the modular group PSL,(Z).

Again there is a combinatorial counterpart; rather than considering graphs
one considers a locally finite cellular complex K such that all vertices have
1somorphic neighbourhoods. As before, g, counts the number of paths of length
n in the 1-skeleton of K between two fixed vertices; and f,, counts elements
of the fundamental groupoid, i.e. homotopy classes of paths, between two fixed
vertices whose minimal-length representation as a path in the [-skeleton of K
has length n. We obtain a relation between these numbers when C consists
solely of triangles and arcs, with no two triangles nor two arcs meeting; these
are precisely the complexes associated with quotients of the modular group.

The original motivation for our research was the study of cogrowth in
group theory [Gri78a]; however, as it turned out, the more general problem
in graph theory has applications to other domains of mathematics, like the
Ihara-Selberg zeta function and its evaluation by Hyman Bass [Bas92].

2. MAIN RESULT

Let X' be a graph, that may have multiple edges and loops. We make
the following typographical convention for the power series that will appear :
a series in the formal variable ¢ is written G(¢), or G for short, and G(x)
refers to the series G with x substituted for 7. Functions are written on the
right, with (x)f or ¥ denoting f evaluated at x.
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We start by the precise definition of graph we will use:

DEFINITION 2.1 (Graphs). A graph X is a pair of sets X = (V,E) and
maps
a.E—V, w:E—V, T E—E
satisfying

e=ce, e* =ev .

The graph A" is said to be finite if both E(X) and V(X&) are finite sets.

A graph morphism ¢: G — H is a pair of maps (V(@),E(¢)) with
V(p): V(G) — V(H) and E(¢): E(G) — E(H) satisfying

eE(¢) = e E(9), e*V(¢) = (eE(¢)™ .

Given an edge e € E(X), we call e* and e¥ e’s source and destination,
respectively. We say two vertices x,y are adjacent, and write x ~ y, if they
are connected by an edge, i.e. if there exists an e € E(X) with ¢* = x and
e“ = y. We say two edges e,f are consecutive if e* = f%. A loop is an edge
e with e® = e“.

The degree deg(x) of a vertex x is the number of incident edges:

deg(x) =#{e € E(X) | e =x} =#{e € E(X) | ¢ = x} .

If deg(x) is finite for all x, we say X is locally finite. If deg(x) = d for all
vertices x, we say X is d-regular.

Note that the involution e — e may have fixed points. Even though the
edges of A are individually oriented, the graph A&  itself should be viewed
as an non-oriented graph. In case - has no fixed point, X can be viewed as
a geometric graph.

DEFINITION 2.2 (Paths). A path in X 1is a sequence T,

T = (UO;e]7U1;eZ;' c+ 5 €ny Upn)
of edges and vertices of X', with e = v;_| and ¢ =v; forall i € {1,...,n}
and n > 0. The length of the path 7 is the number n of edges in 7. The
start of the path 7 is 7#® = vg, and its end 1S 7 = v,. If 7% = 7%, the

path 7 is called a circuit at 7*. In most cases, we will omit the v; from
the description of paths; they are necessary only if |x| = 0, in which case a
starting vertex must be specified. We extend the involution - from edges to
paths by setting

T = (Un; €ny - - -, V1, €1, Vo)
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(note that 7 is a path from 7% to 7).

We denote by E*(X) the set of paths, with a partially defined multiplication
given by concatenation: if 7 and p be two paths with 7 = p%, their product
is defined as 7p = (T, ..., Mx|, P11 Plp|)- FOr tWoO vertices x,y € V(X)
we denote by [x,y] the set of paths from x to y. We turn V(&) into a metric
space by defining for vertices x,y € V(&) their distance

6(x,y) = min || .

The ball of radius n at a vertex x € V(X) is the subgraph B(x,n) of X with
vertex set

V(B(x,n)) = {y € V(X) : 6(x,y) < n}
and edge set
E(B(x,n) = {e € E(X) : ¢* € V(B(x,n))} .
We define as(e) = afe),

{ e if e¥ € E(B)

e else,

and w(e) = a(e).

This definition amounts to “wrapping around disconnected edges”. It has
the advantage of preserving the degrees of vertices.

DEFINITION 2.3 (Bumps, Labellings). We say a path 7 has a bump at i
if m; =7 ; if the location of the bump is unimportant we will just say =
has a bump. The bump count bc(m) of a path 7 is the number of bumps in
7. A proper path in X 1s a path 7 with no bumps.

Let k be a ring. A k-labelling of the graph A is a map
¢ E(X)—Kk.

The simplest examples of labellings are:
o the rrivial labelling, given by k =7 and e’ =1 for all ¢ € E(X);

* the length labelling, given by k = Z[[t]] and ¢ =t for all e € E(X).
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A Kk-labelling ¢ of X induces a map, still written /: E*(X) — k, by

setting
¢ ¢_L ¢

T =TTy .. T, .

The labelling £: E*(X) — k is complete [Eil74, § VI.2] if for any vertex
x of X and any set A of paths in X starting at x there is an element (A)X
of k, and this function X satisfies

{rHZ = =* | (AU BT = (A + (B)X

for all paths 7 and disjoint sets A and B (LJ denotes disjoint union). If A

is infinite, it is customary, though abusive, to write (A)X as Zwe 5 7.

If k is a topological ring (R, C, the formal power series ring Z[[z]],
etc.), completion of £ implies that ¢ — 0 when || — oo, but the converse
does not hold. The completeness condition becomes that

A)Y =  lim t
( ) BCA, |B|<oo7rZ€;g

be a well-defined element of k for all A ; i.e., the limit exists. Generally, we
define the following topology on k: a sequence (A;)X € k converges to O if
and only if min,¢ca, |7| tends to infinity.

In the sequel of this paper all labellings will be assumed to be complete.
The length labelling is complete for locally finite graphs; more generally, ¢ is
complete when k is a discretely valued ring, e has a positive valuation for
all edges e, and X is locally finite. An arbitrary ring k may be embedded in
k’ = K[[¢]], where ¢ has valuation 1 and k has valuation 0; if ¢: E(X) — k
is a labelling, we define ¢': E(X) — Kk’ by ¢ = e’ and ¢’ will be complete
as soon as X is locally finite. In particular the length labelling is obtained
from the trivial labelling through this construction. In all the examples we
consider the labelling is defined in this manner.

Throughout the paper we shall assume a graph X and two vertices
*,T € V(X) have been fixed. We wish to enumerate the paths, counting their
number of bumps, from * to t in A. For a given complete edge-labelling
¢, consider the series

s = Y wlek, FO= ) uOr’cku].

TE[*,T] mE[*,T]

Note that in general & and § also depend on the choice of x and f.
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For all vertices x € V(X) let

(u— D) !
S = (1 -2 L= (u— 1)2(ez)~’f) < Klludl

eCE(X): e%=x

(A combinatorial interpretation of these K, will be given in Section 6.) Let /
be a complete k-labelling of &', and define a new labelling ¢ : E(X) — K[[u]]
by

I 1

¢
f— Kew .
I~ - 12ee)’

e

Then our main result is the following:

THEOREM 2.4. With the definitions of ¢ and K, given above, {' is a
complete labelling and we have in K[[u]] the equality

2.1) 3 =K, - &)

We now explicit the definitions and main result for the length labelling on
a locally finite graph.

DEFINITION 2.5 (Path Series). The integer-valued series

Gty = Y ™ eN[[t]]

e[, 1]

is called the path series of (X,,7{). The series

Fu,p= Y u®™d € N[u][[]] € N[u, 1]

mTelx,1]

is called the enriched path series of (X,x,7). Its specialization F(0,7) is
called the proper path series of (X, x, 7).

In case x = 7, we will call G the circuit series of (X,x) and F the
enriched circuit series of (X, x). The circuit series is often called the Green
function of the graph AX.

Note that F(u,t) lies in N[u][[¢]] because the number of bumps on a path
is smaller than its length, so all monomials in the sum have a u-degree smaller
than their f-degree; hence for any fixed 7-degree there are only finitely many

monomials with same 7-degree, because & is locally finite.
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Expressed in terms of length labellings, our main theorem then gives the
following result:

COROLLARY 2.6. Suppose X is a d-regular graph. Then we have

FQ—u,t)  Glima—r)

22 _ |
(2.2) 1 — u?s? 1 4+ u(d — u)t?

Proof. Because X 1is regular, the K, defined above do not depend on x
and are all equal to

_ 2 - _ 0242
Kz(l—d (u— 1)t > _ I — (1 —ut ;
1 — (u— 1) 14+(d—1+u(l —ur
thus Theorem 2.4 reads
tK A
S(e!—»z‘):K-Qﬁ(eH (i = {k)) :

Now writing §(e — 1) = F(u,t) and &(e — &) = G(®) completes the
proof. [

The special case u = 1 of this formula appears as an exercise in [God93,
page 72].

The meaning of the corollary is that, for regular graphs, the richer two-
variable generating series F(u,t) can be recovered from the simpler G(f).
Conversely, G can be recovered from F, for instance because G(t) = F(1,t).
Remember it is valid to substitute 1 for u in F, because for any fixed r-degree
only finitely many monomials with that 7-degree occur in F. In fact, much
more is true, as we have the equality

2
1=/ 1=4(1—u) (@~ 1+0) 2)
1+ ( I B Y F(u 1~\/1—4(1~u)(d~1+u)22)

(1= =40 -0 d— 1w 22) 20 ~uyd—1+u)z
Hd—14u)? 22

G(z) =

1 —

or after simplification
2(d — 1+ u)
d—2+u+d+u/1—401 —u(d—-14u)z2
1—+/1—4(1 —uyd—1 +u)z2)
21 —u)(d— 1+ u)z

where both sides are to be understood as power series in N[[u, z]] that actually
reside in N[[z]]. Then for any value (say, in C) of u we obtain an expression

(23) GQ@) =

xF(u,

m.___.“ L
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of G in terms of F(u,—). Of particular interest is the case u = 0, where
(2.3) specializes to

4 G(z) =
o & d—2+d\/1—4d—- 12

2d - 1) 1 — /1 —4(d—1)z2
F<O 2(d — 1)z ) '

This equation appears in a slightly different form in [Gri78al].
Similarly, we have in N[[z,z,z7 1] the equality

2

2.5) G(z) =
Eo iR 2 — d2tz +dz/d* P + 4 — 4tz

dr — \/d*1> +4 — 4t
cp(1- VLA
2t

Beware though that (2.5) holds for formal variables z and t; if we were to
substitute a real number for ¢, then the resulting series G(z) would converge
absolutely for WJL—W <z <t < p, where p is the radius of convergence
of F(1,—) = G, and in particular not in a neighbourhood of 0.

The equalities (2.3) and (2.5) are easily derived from (2.2) by setting
2= Tra—ne and solving for ¢ and u.

COROLLARY 2.7. In the setting described above :
o If X is finite, then both F and G are rational series.
e If G is rational, then F is rational too.

e F is algebraic if and only if G is algebraic.

The proofs are immediate and follow from the explicit form of (2.2). The
converse of the first statement of the preceding corollary will be proved in
Section 3.2. The last statement appears in [Gri78a] and [GH97].

In the following section we draw some applications to other fields:
group theory and language theory. We give applications of Theorem 2.4 and
Corollary 2.6 to some examples of graphs in Section 7, and a derivation of a

“cogrowth formula” (as that of Subsection 3.1) for a non-free presentation in
Section 8.

We give two proofs of the main result in Sections 4 and 6. The first one,
shorter, uses a reduction to finite graphs and their adjacency matrices. The
second one is combinatorial and uses the inclusion-exclusion principle. Using

the first proof, we obtain in Section 5 an extension of a result by Yasutaka
Ihara.
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Finally in Section 9 we show how to compute the circuit series of a free
product of graphs (an analogue of the free products of groups, via their Cayley
graph), and in Section 10 do the same for direct products of graphs.

3. APPLICATIONS TO OTHER FIELDS

The original motivation for Formula 2.2 was its implication of a well-known
result in the theory of random walks on discrete groups.

3.1 APPLICATIONS TO RANDOM WALKS ON GROUPS

In this section we show how G is related to random walks and F
to cogrowth. This will give a generalization of the main formula (1.1) to
homogeneous spaces I1/Z, where = does not have to be normal and IT is a
free product of infinite-cyclic and order-two groups. For a survey on the topic
of random walks see [MW&89,Woe94].

Throughout this subsection we will have F(¢) = F(0,t). We recall the
notion of growth of groups:

DEFINITION 3.1. Let I" be a group generated by a finite symmetric set
S. For a v € I' define its length

|v| =min{n e N : vy € §"}.
The growth series of (I',S) 1s the formal power series

frs®=>_ e N[ .

~el

Expanding fir.s () = > fut", the growth of (I',S) is
oI, S) = limsup \/ﬁ

n—2C

(this supremum-limit is actually a limit and is smaller than |S| —1).
Let R be a subset of I'. The growth series of R relative to (I',S) is the
formal power series

fit,5® = ZZM € N[[]] .

YER

Expanding f{} S)(t) = > fut", define the growth of R relative to (I',S) as

a(R; T, S) = limsup i/f, .

n— 20
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If X is a transitive right I'-set, the simple random walk on (X,S) is the
random walk of a point on X, having probability 1/|S| of moving from its
current position x to a neighbour x-s, for all s € S. Fix a point * € X, and
let p, be the probability that a walk starting at * finish at % after n moves.
We define the spectral radius (which does not depend on the choice of x) of
the random walk as

v(X,S) = limsup /p, -

A group I is quasi-free if it is a free product of cyclic groups of order 2
and oco. Equivalently, there exists a finite set S and an involution ~: § — §
such that, as a monoid,

[MM=(S|ss=1 VseSs).

IT is then said to be quasi-free on S. All quasi-free groups on S have the
same Cayley graph, which is a regular tree of degree |S]|.

Every group I' generated by a symmetric set S is a quotient of a quasi-
free group in the following way: let = be an involution on S such that for
all s € S we have the equality § = s~ ! in I". Then T is a quotient of the
quasi-free group (S|ss=1 Vse€S).

The cogrowth series (respectively cogrowth) of (I',S) is defined as the
growth series (respectively growth) of ker(w: Il — I') relative to (I, S),
where Il is a quasi-free group on S.

Associated with a group II generated by a set S and a subgroup = of II,

there is a [S|-regular graph &X' on which TI acts, called the Schreier graph
of (I, S) relative to Z. It is given by X = (V,E), with

V =

[1]

\IT
and
E=VXS§, @9N=v, WN=uvs, (vs) =ss 1);

Le. two cosets A,B are joined by at least one edge if and only if AS D B.
(This is the Cayley graph of (I1,S) if = = 1.) There is a circuit in X at
every vertex Zv € Z\IT such that s € v~!Zv for some s € §: and there is a
multiple edge from Zv to Zw in X if there are s,7 € v~ 'Zw with s #tres.
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COROLLARY 3.2 (of Corollary 2.6). Let Il be a quasi-free group, presented
as a monoid as

M=(S|ss=1 VseS8).

Let = < II be a subgroup of I1. Let v = v(E\I1,S) denote the spectral radius
of the simple random walk on Z\I1 generated by S; and o = a(E;I1,S)
denote the relative growth of Z in T1. Then we have

VI (o BT
.  wv=4{ " <¢rsn‘—7+ =) s ST

24/18]—1 ) T

Proof. Let X be the Schreier graph of (I1,S) relative to = defined above.
Fix the endpoints x = { = &, the coset of 1, and give X the length labelling.
Let G and F be the circuit and proper circuit series of A . In this setting,
expressing F(f) = ) f,1" and G(r) = > _ gnt", we see that |S|v is the growth
rate limsup /g, of circuits in X, and « the growth rate limsup+/f, of
proper circuits in X'. As both F and G are power series with non-negative
coefficients, 1/(|S|v) is the radius of convergence of G and 1/« the radius
of convergence of F. Let d = |S| and consider the function

¢ =

t
1+d— D2~

This function is strictly increasing for 0 <7 < 1/ Vd — 1, has a maximum
at t = 1/+/d —1 with (£)¢ = 1/(2\/d — 1), and is strictly decreasing for
t>1/vd—1.

First we suppose that a > +/d — 1, so ¢ is monotonously increasing on
[0,1/a]. We set u =1 in (2.2) and note that, for ¢ < 1, it says that F has
a singularity at ¢ if and only if G has a singularity at (f)¢. Now as 1/« is
the singularity of F closest to 0, we conclude by monotonicity of ¢ that the
singularity of G closest to 0 is at (1/a)¢ ; thus

1 1/

dv 1+d-1)jo? = (1/a)¢ .

Suppose now that o < /d—1. If dv < 2v/d — 1, the right-hand side
of (2.2) would be bounded for all + € R while the left-hand side diverges
at t = 1. If dv > 2+/d—1, there would be a r € [0,1/v/d— 1[ with
()¢ = dv; and F would have a singularity at t < 1/a. The only case left is

dv =2+/d — 1. []
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FIGURE 1

The function o — v relating cogrowth and spectral radius (for d = 4)

COROLLARY 3.3 (Grigorchuk [Gri78b]). Let T" be a group generated by a
symmetric finite set S, let v denote the spectral radius of the simple random
walk on T', and let « denote the cogrowth of (I',S). Then

w/15|-1< o «/lsl—1> . —
ST\ s T e if a>+/|S] =1,
2,/]5]—1

S|

(3.2)

else.

A variety of proofs exist for this result: the original [Gri78b] by Grigorchuk,
one by Cohen [Coh82], an extension by Northshield to regular graphs [Nor92],
a short proof by Szwarc [Szw89] using operator theory, one by Woess [Woe94],
etc.

Proof. Present I' as I1/=Z, with TI a quasi-free group and Z the normal
subgroup of II generated by the relators in I', and apply Corollary 3.2. [

We note in passing that if a < +/|S| — 1, then necessarily o = 0.
Equivalently, we will show that if o < +/|S| — 1, then Z =1, so the Cayley
graph X is a tree. Indeed, suppose X is not a tree, so it contains a circuit A
at . As X is transitive, there is a translate of A\ at every vertex, which we
will still write X. There are at least |S|(|S| — 1)""%(|S| —2) paths p of length
t in X starting at x such that the circuit pAp is proper; thus

a > limsup *"™V/|S|(IS] — D=2(]S| —2) = /|S[ - 1 .

1—00

In fact it is known that o > /[S| — 1 ; see [Pas93].

S S S S W
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3.2 THE SERIES FF AND G ON THEIR CIRCLE OF CONVERGENCE

In this subsection we study the singularities the series F' and G may have
on their circle of convergence. The smallest positive real singularity has a
special importance :

DEFINITION 3.4. For a series f(f) with positive coefficients, let p(f) denote
its radius of convergence. Then f is p(f)-recurrent if
lim f(f) = o0 .
l—w(f)f( )

Otherwise, it is p(f)-transient.

As typical examples, 1/(p — f) is p-recurrent, as are all rational series;
\/p—1 is p-transient, while 1/y/p — ¢ is not.

To study the singularities of F or G, we may suppose that x = ; indeed
in was shown in [Kes59] and [Woe83, Lemma 1] that the singularities of F
and G do not depend on the choice of x and 7. We make that assumption
for the remainder of the subsection. We will also suppose throughout that X
is d-regular, that the radius of convergence of F is 1/« and the radius of
convergence of G is 1/(dv) = 1/0.

DEFINITION 3.5. Let X be a connected graph. A proper cycle in X 1s
a proper circuit (my,...,m,) such that 7 # m,. The proper period p and
strong proper period p; are defined as follows:

p = gcd{n | there exists a proper cycle 7 in X with |n|=n},

ps = ged{n | Vx € V(X) there exists

a proper cycle 7 in B(x,n) with |r| =n},

where by convention the gcd of the empty set is co. The graph X is strongly
properly periodic if p = p;.

The period q and strong period qs; of X are defined analogously with
‘proper cycle’ replaced by ‘circuit’. X' is strongly periodic if g = g;.

THEOREM 3.6 (Cartwright [Car92]). Let X have proper period p and
strong proper period ps. Then the singularities of F on its circle of convergence

are among the
eank/pS

) kzl:---aps~
(87
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If moreover X is strongly properly periodic, the singularities of F on its
circle of convergence are precisely these numbers.

Let X have period q and strong period qs. Then the singularities of G
on its circle of convergence are among the

€2z7rk/q3-

g

If moreover X is strongly periodic, the singularities of G on its circle of

convergence are precisely these numbers.

If X is connected and non-trivial, there is a path of even length at
every vertex (a sequence of bumps, for instance). All graphs are then either
2-periodic (if they are bipartite) or 1-periodic. If there is a constant N such
that for all x € V(X) there is at x a circuit of odd length bounded by
N, then X is strongly 1-periodic; otherwise X 1is strongly 2-periodic. The
singularities of G on its circle of convergence are then at 1/3, and also at
—1/6 if X is strongly periodic with period 2.

If X is not strongly periodic, there may be one or two singularities on
G’s circle of convergence; consider for instance the 4-regular tree, and at a
vertex % delete two or three edges replacing them by loops. The resulting
graphs A&, and A3 are still 4-regular and their circuit series, as computed
using (7.2), are respectively

Go(t) = 2
a3 Ty et/ 122
' 6
Gs3(1) =

5—18t+ 1 — 122

G, has singularities at 41/+/12 on its circle of convergence, while Gz has
only 2/7 as singularity on its circle of convergence.

Following the proof of Corollary 3.2 above, we see that if 8 < d the
singularities of F' on its circle of convergence are in bijection with those
of G, so are at 1/a and possibly —1/a, if X is strongly two-periodic. If
3 =d, though, X can have any strong proper period; consider for example
the cycles on length k studied in Section 7.2: they are strongly properly
k-periodic.

The forthcoming simple result shows how X can be approximated by
finite subgraphs.
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LEMMA 3.7. Let X be a graph and x, y two vertices in X. Let &,
and §yy be the path series and enriched path series respectively from x to
y in X, and let &, and Sz,y be the path series and enriched path series
respectively from x to y in the ball B(x,n) (they are 0 if y & B(x,n)). Then

nliH)lo ®Z’,y = ®x)y7 nli)rlgo {S;Z,y - Sxay )

Proof. Recall that lim &} = &, , means that both terms are sums of
paths, say A, and A, such that the minimal length of paths in the symmetric
difference A,/AA tends to infinity. Now the difference between &7, and &,

consists only of paths in A that exit B(x,n), and thus have length at least
2n — 6(x,y) — oco. The same argument holds for §. [J

DEFINITION 3.8. The graph X is quasi-transitive if Aut(X) acts with
finitely many orbits.

LEMMA 3.9. Let X be a regular quasi-transitive connected graph with
distinguished vertex %, and let f,, and g, denote respectively the number of
proper circuits and circuits at x of length n. Then

1/|X]| if X is finite and has odd circuits;

. . if A 1s finite
limsup g,/3" = limsupf,/a” = § 2/|X| and has only even circuits;
n—oo n— o0 ’

0 if X is infinite.

Proof. If X is finite, then J = d, the degree of X ; after a large even
number of steps, a random walk starting at x will be uniformly distributed
over X (or over the vertices at even distance of x, in case all circuits have
even length). A long enough walk then has probability 1/|X| (or 2/|X| if
all circuits have even length) of being a circuit.

If X is infinite, we consider two cases. If G(1/03) < oo, ie. G is
1/3-transient, the general term g¢,/8" of the series G(1/8) tends to O.
If G is 1/(-recurrent, then, as X is quasi-transitive, § = d by [Woe98,
Theorem 7.7]. We then approximate X by the sequence of its balls of radius R,
by Lemma 3.7:

n . n : 1 2
limg—:hm S (or)_

_ Sl
W Br T Rioo d® | Rovoo |B R)|

where we expand the circuit series of B(x,R) as ) grat".
The same proof holds for the f,. Its particular case where X is a Cayley
graph appears in [Woe83]. [
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Note that if X is not quasi-transitive, a somewhat weaker result
holds [Kit98, §7.1]: if X is transient or null-recurrent then the common
limsup is 0. If X is positive-recurrent then the limsups are normalized coeffi-
cients of X’s Perron-Frobenius eigenvector. Lemma 3.9 is not true for arbitrary
d-regular graphs: consider for instance the graph A3 described above. Its cir-
cuit series Gs, given in (3.3), has radius of convergence 1/ =2/7, and one
easily checks that all its coefficients g, satisfy g,/6" > 1/2.

We obtain the following characterization of rational series:

THEOREM 3.10. For regular quasi-transitive connected graphs X, the
following are equivalent :

1. X is finite;
2. G(¢) is a rational function of t;

3. F(t) is a rational function of t, and X is not an infinite tree.

Proof. By Corollary 2.7, Statement 1 implies the other two. By Corol-
lary 2.6, and a computation on trees done in Section 7.3 to deal with the
case F(r) = 1, Statement 2 implies 3. It remains to show that Statement 3
implies 1.

Assume that F(r) = ) f," is rational, not equal to 1. As the f, are
positive, F' has a pole, of multiplicity m, at 1/«. There is then a constant
a > 0 such that f, > a(," )a" for infinitely many values of n [GKP94,
page 341]. It follows by Lemma 3.9 that m = 1 and the graph X is finite,
of cardinality at most 1/a. [

It is not known whether the same holds for regular, or even arbitrary
connected graphs. Certainly an altogether different proof would be needed.

3.3 APPLICATION TO LANGUAGES

Let § be a finite set of cardinality d and let = be an involution on S.
A word is an element w of the free monoid S*. A language is a set L of

words. The language L is called saturated if for any u,v € $* and s € § we
have

uv € L < ussv € L;
that is to say, L is stable under insertion and deletion of subwords of the form

ss. The language L is called desiccated if no word in L contains a subword
of the form s5. Given a language L we may naturally construct its saturation
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(L), the smallest saturated language containing L, and its desiccation L, the
largest desiccated language contained in L.

Let 2 be the monoid defined by generators S and relations ss = 1 for all
ses:

(3.4) Z=(S|ss=1 VseSs).

This 1s a free product of free groups and order-two groups; if = is fixed-
point-free, X is a free group. Write ¢ for the canonical projection from S*
to X. Let k = Z[X] be its monoid ring. Then given a language L C S* we
may define its growth series ©O(L) as

O(L) = Z w®r®l e K[[] .
weEL

This notion of growth series with coefficients was introduced by Fabrice
Liardet in his doctoral thesis [Lia96], where he studied complete growth
functions of groups.

THEOREM 3.11. For any language L there holds

ol)n  OUL) (vra=mz)
1—-2 1+d-DE

(3.5)

where d = |S)|.

Proof. For any language there exists a unique minimal (possibly infinite)
automaton recognising it ([Eil74, §II1.5] is a good reference). Let X be the
minimal automaton recognising (L). Recall that this is a graph with an initial
vertex *, a set of terminal vertices 7" and a labelling ¢': E(X) — S of the
graph’s :edges such that the number of paths labelled w, starting at x and
ending ata 7 € T is 1 if w € L and 0 otherwise. Extend the labelling ¢ to
a labelling ¢: E(X) — K[[t]] by

f =1t (eel)q5 :

Because (L) is saturated, and X is minimal, (@)t = el then L is the set |
of labels on proper paths from x to some 7 € T. Choosing in turn all 7 € T
as 1, we obtain growth series F,, G, counting the formal sum of paths and
proper paths from % to 7. It then suffices to write

OL)D  Nrer Fr)  Yorer Grlimne) O (irnz)
1—-2  1-2 1+ (d— 12 14+ d-D2

L]




COUNTING PATHS IN GRAPHS 101
The following result is well-known :

" THEOREM 3.12 (Miiller & Schupp [MS81, MS83]). Let T' be a finitely
generated group, presented as a quotient X/Z with X as in (3.4). Then O(Z)
is an algebraic series (i.e. satisfies a polynomial equation over K[t]) if and
only if 2/ is virtually free (i.e. has a normal subgroup of finite index that
is free).

It is not known whether there exists a non-virtually-free quasi-transitive
graph whose circuit series (as defined in Corollary 2.6) is algebraic.

4. FIRST PROOF OF THEOREM 2.4

We now prove Theorem 2.4 using linear algebra. We first assume the graph
has a finite number of vertices, for the computations refer to k-matrices and
k[[u]]-matrices indexed by the graph’s vertices. This proof is hinted at in
Godsil’s book as an exercise [God93, page 72]; it was also suggested to the
author by Gilles Robert.

For all pairs of vertices x,y € V(X) let

Bo®= 3 1, Fol= 3 0

mE[x,y] Telx,y]

be the path and enriched path series from x to y; for ease of notation we
will leave out the labelling £ if it is obvious from the context. Let ¢, , denote
the Kronecker delta, equal to 1 if x =y and O otherwise. For any v € k, let
[v]} denote the V(X) x V(X) matrix with zeros everywhere except at (x,y),
where it has value v. Then

6};’)) = 5x,y —f_ Z ee®gw’)z

eCE(X)  ex=x
so that if
A= Z [eﬁ]gi
eCE(X)
be the adjacency matrix of X, with labellings, then we have
(Sxy)ryevix) = L ,
1—A

an equation holding between V(X) x V(X) matrices over K.
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Similarly, letting §,., count the paths from x to y that start with the
edge e,

&x,y - 5)(5.)’ —I_ Z gx:euy )

eCE(X)e>=x
Brey =€ (Fewy + = DFew zy)
Bewzy = (Fuy + (U — DFreyy) 3
these last two lines solve to
Seew = (1= = 12@)") " ("Bowy + (u — 1)(€0)'Bny)

which we insert in the first line to obtain

V4
e
K_] Sy y — 6X , Kew K—wl ew vy -
x By yt Z 1 —(u—1%ee) e Be
eCE(X)ex=x
Thus 1if we let
4.1) ‘ & K A=Y e
. e = — evw s - € e
I = (u—1)ee) c€E(X)
we obtain
_ 1
(4.2) (K eyheyevir) = 75

and the proof is finished in the case that X is finite, because the matrix A’
is precisely that obtained from A by substituting ¢’ for /.

If X has infinitely many vertices, we approximate it, using Lemma 3.7,
by finite graphs. Denote by §7 .(£) and QS’}(,T(E’ ) the enriched path series and
path series respectively in B(x,n), and write

K. -0 = lim 32 .(0) = lim & (¢') = &)

to complete the proof.

5. GRAPHS AND MATRICES

Graphs can be studied through their adjacency and incidence matrices. We
give here the relevant definitions and obtain an extension of a theorem by
Hyman Bass [Bas92] on the lhara-Selberg zeta function. We will use power
series with coefficients in a matrix ring, and fractional expressions in matrices;
by convention, we understand ‘X/Y’ as ‘X - Y"1,
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DEFINITION 5.1. Let X be a finite graph. The edge-adjacency and
inversion matrices of X, respectively B and J, are E(X) x E(X) matrices
over Z defined by

1 if e¥ =@ 1 ife=f
Bef - { f JeJ‘ - {
0 else, 0 else.

The vertex-adjacency and degree matrices of X, respectively A and D, are
V(X) x V(X) matrices over Z defined by

deg(v) 1if v = w,
Avw=H{e€EWX)|e*=vand ¢’ =w}|, Dy, = {

0 else.

A cycle is the equivalence class of a circuit under cyclic permutation of
its edges. A proper cycle is a cycle all of whose representatives are proper
circuits. A cycle is primitive if none of its representatives can be written as ¥
for some k > 2. The cyclic bump count cbc(w) of a circuit © = (7, ..., 7,)
1S

cbe(m)={i=1,...,n|m =71},

where the edge 7,4+ 1s understood to be 7.

The matrices given above are related to paths in X as follows: Consider
first the matrix

M=1—-B-(0—-uJ).
Then the (e,f) coefficient of M~! is precisely

Z ubc(ﬂ'f)[hrl .

T =e, T =f%

This is clear because the series expansion of M~! is the sum of sequences
of (B —J)r (contributing edges with no bump) and Jut (contributing edges

with bumps), with an extra factor of u in case the path ends in f. As a
consequence,

LEMMA 5.2. Let
_1+(1—u)Jt—M_ B
Mt C1-B-0-wit’

Then the (e,f) coefficient of Xg counts the non-trivial paths starting with e
and ending at f*, with t-weight shifted one down :

(XE)e,/" — Z ubc(ﬂ)tlwl—l .

TITm =e, W =f%

X
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Likewise, consider the matrix
P=1—-At+1 —uw)D - (1 —uwlf.
The following lemma will be a consequence of the computations in the next

section.

LEMMA 5.3. Let

(-0 -wP1-P A — (1 —uDt
N Pt C1-Ar+ 0 —-wD -1 —-wb '

Xy

Then the (v,w) coefficient of Xy counts the non-trivial paths starting at v
and ending at w, with t-weight shifted one down :

(Ep )y 10 = Z ubemglml=1

T .mY¢=y, T¥=w

Proof. We will show the matrix 1+ Xyt has as (v,w) coefficient the
enriched path series from v to w. By simple calculation

1— (1 — u)?? K1
1+ Xyt = ( i = )
1—-Ar+ 0 —wyD—(1 —u)l)t2 1A

where K and A’ are given by

14+ (0 —wD—1+uwr N AKt

K = .
1— (1 — w2 ’ 1— (1 — w2

K is a diagonal matrix and the coefficient K, , is precisely K, for the length |
labelling, while the matrix A’ is the matrix of (4.1) in the previous section.
The result then follows from Equation (4.2).  []

In particular, the two matrices Xg and Xy have the same trace, as this |
trace counts all the non-trivial circuits 7 in X, with weight u>*(™7I=1

We now state and prove an extension of a theorem by Bass [Bas92, FZ98,
Nor96] :

THEOREM 5.4. Let C be a set of representatives of primitive cycles in
X, and form the zeta function of X

1
Cu, 1) = H 1 — ucbeglyl

veC
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. . —1
(The choice of representatives does not change the zeta function.) Then ¢
is a polynomial in u and t and can be expressed as

|
(5.2) — A+ 1 —wd)' (=1 — w2y VOl detp,
where
n=|{e € E(X)|e=c¢e}, 2m = |{e € E(X) | e # e} .

The special case u = n = 0 of this result was stated and proved in the
given sources. We will prove the general statement, using a result of Shimson
Amitsur :

THEOREM 5.5 (Amitsur [Ami80,RS87]). Let Xi,...,X; be square matrices
of the same dimension over an arbitrary ring. Let S contain one representative
up to cyclic permutation of words over the alphabet {1,...,k} that are
primitive, i.e. such that none of their cyclic permutations are proper powers

of a word (S is infinite as soon as k > 1). For p = ij...i, € S set
X, =X, ...X;,. Then

det(1 — (X; + -+ + X)) = | [ det@ — X,#1) |
peS

considered as an equality of power series in t over the matrix ring.

The equality (5.1) then follows; indeed, for all edges e € E(X) let X, be
the E(X) x E(X) matrix whose e-th row is the e-th row of B — (1 — u)J,
and whose other rows are 0. Then clearly 1—3" _ gxy Xet = M and, for any
sequence of edges m,

det(1 — X1y = { L= i ds a clocais
1 else,
so equality of ((u,f) and detM follows from Amitsur’s Theorem.

To prove (5.2), we use the following result, whose proof relies on Newton’s

formulas relating the trace of powers of X and the characteristic polynomial
of X:
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PROPOSITION 5.6 ([Ami80, Equation 4.4)]. Let X be a power series in
t over a matrix ring, such that X(0) = 1. Then

1-X
detX:exp(—/tr( < )dt),

where the integration is the formal linear operation on power series that maps
" to 7/ (r +1).

We then have, using Lemmas 5.2 and 5.3,

detM M

(14+ (1 —word — A —w?)yn det 1+ (1 —u)Jt

1+0—-wJt—M
:exp(-—/tr * Mb;)J dl)

— exn] — series counting non-trivial circuits, dt
= @p length shifted down by one

1 — oN242 .
— exp(—/tr( d-wn Pdt)
Pt
. P B det P
Tl —w?r (1= —u)lveol

6. SECOND PROOF OF THEOREM 2.4

Let P = [%, 1] be the set of paths in X from % to {. As we shall apply
the principle of inclusion-exclusion [Wil90], it will be helpful to compute in
IT = Z[[P]], the Z-module of functions from the set of paths to Z. We embed
subsets of P in IT by mapping a subset to its characteristic function:

1 ifreA,

PDOA xa, With(ﬂ')XA:{ .
0 otherwise.

Let B be the subset of bounded non-negative elements of II (i.e. functions f
such that there is a constant N with 0 < (7)f < N for all paths 7). If £ is a
complete labelling of X, there 1s an induced labelling ¢, : B — k given by

(e = (mfr" .
TEP

Note that the sum, although infinite, defines an element of k due to the fact
that ¢ is complete.
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DEFINITION 6.1 (Bump Scheme). Let e € E(X) and v € V(X). A squiggle

along e is a sequence (e,2,...,e,e). A squiggle at v is a squiggle along e
for some edge e such that e* = v.
Let ™ = (vg, ey, ...,en, V) be a path of length n in X'. A bump scheme

for w is a pair B = ((/807 aw o ;ﬁll))(/}/l) XX 7/711)) ’ with
e for all i € {0....,n}, a finite (possibly empty) sequence [ =

(Bis--.,0is) of squiggles at v;;
o forall ie{l,...,n}, a squiggle v; along e;.

The weight |B| of the bump scheme B is defined as

n t;

|B| = ZZ(W:‘JI - D+ Z il -
=1

i=0 j=1

Given a path 7w and a bump scheme B = (3,7) for m, we obtain a new
path 7V B € P, by setting

TV B = /60,1 e '60,1‘0716151,1 e '7116711811,1 et ﬁn,r” s

where the product denotes concatenation.

We now define a linear map ¢: IT — II[{u]] by setting, for f € Il and
TeP,

M) = > @—-DPlpf,

(p,B): pVB=T7

where the sum ranges over all pairs (p,B) where p € P and B is a bump
scheme for p such that pV B = 7. Note that the sum is finite because the
edges of p and of B form subsets of those of 7.

LEMMA 6.2. For any path m we have

(6.1) (m)((xp)p) = u™™.

Proof. Say m = (m,...,m,) has m > 0 bumps, at indices by,...,b,, so
that 7, = 7, . We will show that the evaluation at 7 of the left-hand side
of (6.1) yields u™.

We claim there is a bijection between the subsets C of {I,...,m} and
the pairs (pc,Bc) where pc is a path and B¢ is a bump scheme for pe with
T = pc V Be; and further |B¢| = |C|.

First, take a p and a B = (8,v) such that pV B = 7. The path pV B is
obtained by shuffling together the edges of p and B, and this partitions the
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edges of 7 in two classes, namely (i) those coming from p and (ii) those
coming from (§ and 7. Let C C {1,...,m} be the indices of the bumps b;
in m coming from B, ie. such that 7, and m,,, belong to the class (ii).
One direction of the bijection is then (p,B) — C.

Conversely, given a subset C consider the set D = {b; | i € C}. Split it in
maximal-length runs of consecutive integers D = D;LI---UD;. For all runs D;
do the following: to D; = {j,j+1,...,j+2k—1} of even cardinality associate
a squiggle ~; of length 2k along 7;;to D; = {j,j+1,...,j+2k—2} of odd
cardinality associate a squiggle [;; of length 2k at v;_;; then delete in =
the edges 7, ..., m4o—1. This process constructs a bump scheme B = (3, )
while pruning edges of m, giving a path v with vV B = 7. These two
constructions are inverses, proving the claimed bijection.

It now follows that

ce{l,...,m}

Let ¢': E(X) — K[[u]] be defined by

v 1
T 1 (et — w2’

We prove Theorem 2.4 by noting that &(¢) = (xp)l., that §() = (xpd)lx,
and that for any f € IT we have (f¢)l, = K. (f)£.. To prove this last equality,
take a path m = (m,...,m™,) on vertices vy, ...,v,. Then

Xmy Dl = Y _(u— D v By,
B

‘Ko .

where the sum ranges over all bump schemes for 7, and

; 1
K. 7w =K, 'k,
=7 T — (u— D2(mf Y

1 ¢
—, K, .
L= (= D) "
It is clear these last two lines are equal; for the power series expansion of
the K, correspond to all the possible squiggle sequences f3; at v;, and the
power series expansion of the 1/(1—(u— D2 ()% correspond to all possible
squiggles y; along ;.
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7. EXAMPLES

We give here examples of regular graphs and when possible compute
independently the series ' and G. In some cases it will be easier to compute
F, while in others it will be simpler to compute G first. In all cases, once
one of I and G has been computed, the other one can be obtained using
Corollary 2.6.

In all the examples the graphs are vertex transitive, so the choice of * is
unimportant. To simplify the computations we choose = x and the length
labelling.

7.1 COMPLETE GRAPHS

Let X = K,,, the complete graph on v > 3 vertices. Its degree is d = v—1.
To compute F' and G, choose three distinct vertices «,$,# (the choice is
unimportant as K, is three-transitive). Define growth series

F(u,t) the growth series of circuits based at = ;
F'(u,t) the growth series of paths 7 from $ to * with e =#;

F"(u, 1) the growth series of paths 7 from $ to » with 7% = x.

Then
:1+w~nﬂw—mﬁ+uﬂm

3

F
F’:{FH%U~3+WF]

2
F”:4L+m—1ﬁ——i3]

v—1

Indeed the first line states that a circuit at * is either the trivial circuit at *,
or a choice of one of v — 1 edges to another point (call it $), followed by a
path from §$ to % this path can first go to any vertex of the v — 2 vertices
(say (#) different from % and $, and thus contribute F’ , Or go back to =
and contribute F” and a bump.

The second equation says that a path from $ to * starting by going to
# can either continue to %, contributing F’, go to any of the v — 3 other
vertices contributing F’, or come back to $, contributing F’ and a bump.

The third line says that a path from $ to * starting by going to % continues

as a circuit at x ; but if the circuit is non-trivial, then one out of v — 1 times
a bump will be contributed.
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Solving the system, we obtain
1+ —wt 1—@w-=2t+(1—u(v—2+ui
I —(v—24+ux L4+t4+ {0 —-ww—2+ut? '

We then compute

F(u,t) =

1 —(v—2)t
1+ —@-"Dp’
(1+01 —@—=2t+ (v —2)?)
1—@w-200+1t+ -2

G(t) = F(1,1) =

FQO,1) =

7.2 CYCLES

Let X' = Cy, the cycle on k vertices. Here, as there are 2 proper circuits
of length n for all n multiple of k (except 0), we have

1+
1 —tk

Obtaining a closed form for G is much harder. The number of circuits of

length n is
n
In = ) <i) )

i€Z:i=0 [k], i=n [2] 2

FQO,1) =

from which, by [Gou72, 1.54], it follows that

k—1

1 1 1 1
00 = 2. 7~ (C+¢ M) P 2cos(Z)t |

Ck=1 j=0 k-
It 1s not at all obvious how to simplify the above expression. A closed-form
answer can be obtained from (2.3), namely

L@+ (1-VI=4) @+ (1-VT-4)*
- (1-VI=48)" Qof - (1-VT-47)"

G(1)

or, expanding,
k)2

m( k
Q0 + H;O(l — 482 <2m>
Gl) = (k+1)/2 X '
2\ M
> (-4, )

m=1
However in general this fraction is not reduced. To obtain reduced fractions
for F(u,t) (and thus for G(#)), we have to consider separately the cases where
k 1s odd or even.




COUNTING PATHS IN GRAPHS 111

For odd k, letting k = 2/ + 1, we obtain

£
ol (=" + (1 — P "
1+ —wt o

PO =1"0vun 2 !
S ek 4+ (1=t
m=0

J4
Z Qf,t;l(—t)m
G(f) _ m=0 . ’
(1—21) (Z aﬁ,zm)
m=0
where
( nf{l— 5 .
(—)2< mz> it m=0 [2],
2
QU = 4
ey (£ — Bl
L(_) : ( L ) ifm=11[2].
7

= 14 {—m
— < N )(_tZ)m(l . (1 . u2)t2)£—~2m
F(u,t) = m=0
e {—1—m 7
_ 242 _ 2Nme1 2N 2N\e—1—-2m
(1 (l+u)t)<m};o( . )(r)(l (1 = w)?) )
Lo fr-m
Z ( >(_t2)m
{—m\ m
G(Z) _ m=0
eu's l—1—m ’
(1 _ 412) ( )(__tZ)m
(X (. )

expressed as reduced fractions.
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The first few values of F, where O stands for 1+ (1 — u?)¢?, are:

k F(u,t) k F(u,t)
14+ (1 — u) O
1 L 2 —_—
1 — (1 +ut 1 — (1 4+ u)?f?
3 A+ —wo@ -1 4 0% — 272
(1 -0+ wn@+r) 1 — (14 u??
5 (14+ 1 —w)(@? —0r— ) 6 02 — 372
(1—1+wn@%+ 0+ 12) (1 — (1 4+ w)?2)(O% — 1)
- (14 (1 —w)(@® — 0% — 202 + ) g 0% — 4022 + 24
(1 — (1 4+ wn)(@3 + 0% — 202 — 1) (1 — (1 + w)22)(O? — 212)
9 (1 4+ (1 —wn)(@ — (@3 — 302 — A) 10 04 — 5022 + 5¢
(1 — (1 +w) @+ (@3 — 302 + 3) (1 — (1 4+ w)22)(O% — 3022 + 4)

These rational expressions were computed and simplified using the com-
puter algebra program Maple™.

7.3 TREES
Let X be the d-regular tree. Then

F0,7) =1

as a tree has no proper circuit; while direct (i.e., without using Corol-
lary 2.6) computation of G 1s more complicated. It was first performed
by Kesten [Kes59]; here we will derive the extended circuit series F(u,t) and
also obtain the answer using Corollary 2.6.

Let 7 be a regular tree of degree d with a fixed root %, and let 7~
be the connected component of % in the two-tree forest obtained by deleting
in 7 an edge at x. Let F(u,t) and F’(u,t) respectively count circuits at
in 7 and 7. For instance if d = 2 then F’ counts circuits in N and F
counts circuits in Z. For a reason that will become clear below, we make the
convention that the empty circuit is counted as ‘1’ in F and as ‘u’ in F’.
Then we have

F' = d— 1)tF't
U= ) o

1

F=1-+dtF't .
T 1—(d—-14u)tF't

Indeed a circuit in 7' 1is either the empty circuit (counted as u), or a
sequence of circuits composed of, first, a step in any of d — 1 directions, then
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a ‘subcircuit’ not returning to x, then a step back to x, followed by a step in
any of d — 1 directions (counting an extra factor of u if it was the same as
before), a subcircuit, etc. If the ‘subcircuit’ is the empty circuit, it contributes
a bump, hence the convention on F’. Likewise, a circuit in 7 is either the
empty circuit (now counted as 1) or a sequence of circuits in subtrees each
isomorphic to 7.

We solve these equations to

/ 2(1 —u)
F(l—ut= |
L= u(d — ) + /(1 + u(d — )P — 4(d — 1)1’
— _ 1242
F(l —u,f) = 2(d — (A — ur*)

d—2)(1 + u(d — w)2) + d/(1 + uld — w22 —4d — D2
Using (2.3) and F(0,7) = 1 we would obtain

Lud_D(FJCm:ﬁf

2d— Dt

- (1-«1—4((1—1);‘2)2 ’

2(d— 1yt

G(r) =

or, after simplification,
2(d—1)
d—2+d\/1—4d—-1D2’
which could have been obtained by setting u =0 in F(1 — u,1).
In particular if d =2, then X = C., = Z and

2n 1
G(Z) — < >t2n =
; n V1 — 472

Note that for all d the d-regular tree X is the Cayley graph of
I' = (Z/2Z)*? with standard generating set. If d is even, X 1is also the
Cayley graph of a free group of rank d/2 generated by a free set. We have
thus computed the spectral radius of a random walk on a freely generated
free group: it is, for (Z/2Z)*" or for F,/,, equal to

2v/d — 1
7 .
Remark that for d = 2 the series F(u,t) does have a simple series

expansion. By direct expansion, we obtain the number of circuits of length
2n in Z, with m local extrema, as

G(t) =

(7.1)

n— 2
2 2<mi> if m=1[2],
([ Ilum l F(l/l, f)) _— 2
n—1 n—1 .
2(lﬂ><m7> if m=0 [2].

2
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We may even look for a richer generating series than F : let

Hav,n= 3w mm=0dm e Niw,v]([],

7r: path starting at *

where 6 denotes the graph distance. Then

H(,v,t) = F(1,t) + dF'tvF + dF'tv(d — DF'tvF + . ..
1+ F'(1, )t
T 1-d-DF( D
and as H is a sum of series counting paths between fixed vertices we obtain
H(u,v,t) from H(l,v,t) by extending (2.2) linearly:

F(l,1);

H(l —u,v,1) _ H(LU’ 1+L¢((5—u)t2)
1 — u?r? 1 4+ u(d — u)t?
We could also have started by computing

14+ vt
1 —(d— v’

the growth series of all proper paths in 7, and using (2.3) and (2.5) obtain

HO,v,1) =

H(I_W—;T-lﬁ)z 1—+/1—4(d - DA
H(:[?v?Z): H( 707?))7
(i 2d = Dt

u( 2(d—1)t )
L2 d—D@r+0% 2(d -1+
. y ( Y4 +0%) 2 )+

1+ ud—we 4d— 122 — w202 2r—00

where 00 = 14 u(d — w)t* — /(1 + u(d — w)r?)> — 4(d — 1)i2.
Recall that the growth series of a graph A at a base point % is the power

Py= > &,

VEV(X)

series

where 6 denotes the distance in A'. The series H is very general in that it

contains a lot of information on 7 , namely
o Hu,0,0) = F(u,1);
e H(,1,1) = 1—5:1); = P(t) is the growth series of 7 ;
e H(1,1,1)=1/(1 —dt) is the growth series of all paths in 7.

(Note that these substitutions yield well-defined series because for any i
there are only finitely many monomials having r-degree equal to i.) |
We can also use this series H to compute the circuit series F¢ of the cycle
of length k, that was found in the previous section. Indeed the universal cover
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of a cycle is the regular tree 7 of degree 2, and circuits in C correspond
bijectively to paths in 7 from * to any vertex at distance a multiple of k.
We thus have
Fe(u,t) = Z H(u,C,1)
G:¢F=1

where the sum runs over all kth roots of unity and d =2 in H.

We consider next the following graphs: take a d-regular tree and fix a
vertex %. At «, delete e vertices and replace them by e loops. Then clearly

1+t
l—(e—1t’

F0,1) =

as all the non-backtracking paths are constrained to the e loops. Using (2.3),
we obtain after simplifications

2(d —1)

72) G = |
4 O e T2 2ed— i+ d— o/l _4d— DP

The radius of convergence of G 1s

. 1 e—1
mm{zw—:? d+ e — )
7.4 TOUGHER EXAMPLES

In this subsection we outline the computations of F and G for more
complicated graphs. They are only provided as examples and are logically
independent from the remainder of the paper. The arguments will therefore
be somewhat condensed.

First take for X the Cayley graph of I" = (Z/2Z) x Z with generators
0,~1)=°]", (0,1)="°7" and (1,0) = ‘<’. Geometrically, X is a doubly-
infinite two-poled ladder.

In Subsection 7.3 we computed

1 — (1 —u)?*?
VI + (1 =)y —42

the growth of circuits restricted to one pole of the ladder. A circuit in & is a
circuit in Z, before and after each step (T or |) of which we may switch to
the other pole (with a «+=) as many times as we wish, subject to the condition
that the circuit finish at the same pole as it started. This last condition is

expressed by the fact that the series we obtain must have only coefficients of
even degree in t. Thus, letting even(f) = ‘mHTf(_ﬁ, we have

Fz(u, 1) =
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1 t
60 = evn( L1111
(f) = even iz -
it is then simple to obtain F(u,t) by performing the substitution (2.3).

The following direct argument also gives F(u,f): a walk on the ladder
is obtained from a walk on a pole (i.e. on Z) by inserting before and after
every step on a pole a (possibly empty) sequence of steps from one pole to
the other. This process is expressed by performing on Fz the substitution
2 £
tst P+ tut Ut =1+

1—tu’

corresponding to replacing a step on a pole by itself, or itself followed by a
step to the other pole, or itself, a step to the other pole and a step back, etc.
But if the path had a bump at the place the substitution was performed, this
bump would disappear when a step is added from one pole to the other. In

formulas,
2
t
tur—>tu+t2+t3u—|—t4u2+--- = fu +

1 —tu’
Finally we must add at the beginning of the path a sequence of steps from
one pole to the other. Therefore we obtain

Fu, 0 = even{(l + 1 —tm)FZ([?jzf//((ll——zZ;)’t+ 1 fn)} '

As another example, consider the group Z generated by the non-free set
{+1,+2}. Geometrically, it can be seen as the set of points (2i,0) and
(2i+1,+/3) for all i € Z, with edges between all points at Euclidean distance
2 apart;-but we will not make use of this description. The circuit series of
Z. with-this'enlarged generating set will be an algebraic function of degree 4
over the rationals.

Define first the following series:

f(t) counts the walks from O to O in N;

g(t) counts the walks from O to 1 in N;

h(t) counts the walks from 1 to 1 in N.
Denote the generators of Z by 1 =T, 2 =1, —1 =| and —2 =||. The series
then satisfy the following equations, where the generators’ symbol is written
instead of ‘¢’ to make the formulas self-explanatory :

f=1+0f1+TglU+TTgl+TTAIDS,
g=r1r+751g,
h=f+flg+gllyg,
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giving a solution f that is algebraic of degree 4 over Z(1).
Then define the following series:

G counts the walks from 0 to 0 in Z;

e counts the walks from O to 1 in Z.

They satisfy the equations

G=1+420f1G+MglG+TflletNglletTglG+TThlG),
e=Glf+GNf+GIlyg

giving the solution

R 612 — 106(1 + 21)6 + 2123 + 81)6% — 61*(1 + 1§
B 4 — 7t — 362

where ¢ is a root of the equation

1 — @+ D6+ 124308 — 21+ 208 +*6* =0 .

8. COGROWTH OF NON-FREE PRESENTATIONS

We perform here a computation extending the results of Section 3.1. The
general setting, expressed in the language of group theory, is the following:
let IT be a group generated by a finite set S and let = < IT be any subgroup.
We consider the following generating series:

F(f) = Z [lﬂ;

yeEZLII

G(t) = > fwl

~words w in §
defining an element in =

where |y| is the minimal length of + in the generators S, and |w| is the usual
length of the word w. Is there some relation between these series ? In case I1
is quasi-free on §, the relation between F and G is given by Corollary 2.6.

We consider two other examples: Il quasi-free but on a set smaller than S,
and IT1 = PSL,(Z).
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8.1 Il QUASI-FREE

Let S, T be finite sets, and ~ an involution on S. Consider the two
presentations

M=(S|ss=1VseSs),
N=(SUT|ss=1VseS;t=1VteT).
Let & < IT be any subgroup, and let F’ and G’ be the generating series

related to the first presentation. Clearly F’ = F, as both series count the same
objects in II (regardless of II’s presentation); while

G(r) = Gl(l—tlﬂt)

1 —|T|t
Indeed any word w = w;...w, in SUT defining an element of Z can be
uniquely decomposed as w = f#ysit; . ..Sut,, Where s; € S, t; are words in
T for all i, and s;...s5, defines an element of Z; moreover all choices of
S1...8, defining an element of = and words # in 7 give a distinct word

w. It then suffices to note that the generating series for any of the ¢ is
1/(1 —|T|r).

Putting everything together, we obtain:

PROPOSITION 8.1. Let I1 be as above, = <11 a subgroup. Then

F@) G(1+]T|t+t([Sl—1)12>
1—2  1+|T)t+ (S| — D2

8.2 II=PSLy(Z)

Let
IT = PSLy(Z) = (a,b | &*,b%) ,

and let Z < IT be any subgroup. We take S = {a,b,b™'}.

We suppose Z 1is torsion-free, i.e. contains no element of the form waw™
or whtlw™!. Let X be the Schreier graph of (I1,{a,b,b~'}) relative to
=, as defined in Subsection 3.1; it is a trivalent graph whose vertex set is
E\II. Its vertices can be grouped in triples w” = {w,wb,wb™'} connected
in triangles. Let F be the graph obtained from & by identifying each triple
to a vertex. Explicitly,

1
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V(F) = {w* : we V(X)},
E(F) = {(v*, (wa)®) : v € V(X)};

the involution on E(F) is the switch (A,B) — (B,A) and the extremity
functions E(F) — V(F) are the natural projections. Note that F is a 3-regular
graph (for instance, 12 is connected to &*, (ba)® and (b~ 'a)*). In case
Z = 1, it is the 3-regular tree. By construction we have a 3-to-1 map
A: V(X) — V(F). We fix an origin x = 1% in F, and let Fx(u,t) be the
circuit series of (F,*).

Let £ be a triangle, G¢(r) count the circuits at a fixed vertex of £ and
G?(z‘) count paths between two fixed distinct vertices of £. These series were
computed in Section 7.1, with G?(t) =F'(1,0)+ F"(1,1).

Circuits at * in X can be projected to circuits at = in F simply by
deleting all edges of type (w,wb™!) and projecting the other edges through
A. Conversely, circuits in F can be lifted to X by lifting the edges through
A~', and connecting them in X with arbitrary paths remaining inside the
triples : to lift the path # = (my, ..., m,) from F to X, choose edges pi, ..., p,
with (p#)* = 7™ and (p¥)* = 7% for all i € {1,...,n}, and choose, for all
i €40,...,n}, paths 7; from p}’ to pf | remaining inside (p’)*, where by
convention pg = pp,; = *. Then the lift corresponding to these choices is

(81) TOP1L Tt oo PnTn-

Furthermore all circuits at % in & can be obtained this way.

Define G as the series counting paths that start and finish at a vertex in
the same triple as x. It can be obtained using (8.1) by letting p range over all
paths in F', and for each choice of p and for each i € {1,...,n— 1} letting
7; range over Gg or G? depending on whether p has or not a bump at i,

and letting 70 and 7, range over all paths inside the triple **. In equations,
this relation is expressed as

_ 1 2
G0 = (7= ) /Ge® Fr(GE0/Ge(0), 1Ge ) .
Now the series G we wish to obtain is approximately G(7) /9 : for any choice
of x,y € x* there are approximately the same number of long enough paths
from x to y.

A summand of F(f) is the unique lifting of a summand of F =(0,1), but
is twice longer in X than in F.
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DEFINITION 8.2. Two series A(f), B(t) are equivalent, written A ~ B, if
they have the same radius of convergence p, and there exists a constant K
such that

;15 <A@)/B(t) <K ast—p.

Then the remarks of the previous paragraph can be written as

F() ~ Fx(0,£%),
G(1) ~ F£(GE (D)) Ge (), 1Ge (1)) .

Letting Gx be the circuit series of F, we use Corollary 2.6 to obtain

1 —1¢
() 1 —1—22" W) =15
2 2
FZNG( ) GzNG(————J,
@ F\1 124 @ T\ =322
SO
VA + 1312 — 84 — 12
F(z)NG(\/+ )
2(1 +2)(1 + 2£2)
3 g
2.995 ’//
2.99 /
2985 /
208 /l
2.975
2.97
%
29651 12 13 1.4
FIGURE 2

The function « — v relating cogrowth and spectral radius, for subgroups of PSL;(Z)

Let X be a simplicial complex such that at each vertex an edge and a
(filled-in) triangle meet; choose a base point x in X . Say a circuit in the
1-skeleton of X is reduced if it contains no bump nor two successive edges
in the same triangle; thus reduced circuits are in bijection with homotopy
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classes in (X, ). Let F(f) be the proper circuit series and G(7) the circuit
series of A'. Let

A+ 132 48 — 12
D= —=armard
We have proved the following theorem and corollary, similar to those in
Section 3.1:

THEOREM 8.3. F(1) ~ G((1)¢) .

COROLLARY 8.4. Let Z be a subgroup of T1 = PSLy(Z); let v be the
spectral radius of the simple random walk on E\II, and « the “cogrowth”
rate of E\IL. Then provided that « € [\/p,pl, where p is the word growth
of T1, namely V2, we have

1 1
l/v=>_0/a)p, so v= 5\/8&_2+13+4a2+§ .

Proof. The function ¢ is monotonously increasing between 0 and 1/+/2,
where it reaches its maximum. The same argument applies as that given in
the proof of Corollary 3.2. [

We now state the same results for an arbitrary virtually free group with
an appropriate generating system. Let I1 be a virtually free group, such that
there 1s a split exact sequence

- I — 1
where Y is a finite group and X has a presentation
Z=(seS|ss5=1 VseSs).

We assume further that IT is generated by a set T = 7/ U T"” with T”
in bijection through 7 with Y\ {1}, 7' mapping through 7 to {1}, and
T x (T" U {1}) in bijection with S through (z,p) — p~lmp.

For example, consider IT = PSLy(Z) = (a.b,b™!). Take T’ = {a} and
T" = {b,b7 '}, take Y = (b,b™!) and T = (a,bab~!.b~'ab). Then the
hypotheses are satisfied.

With these hypotheses, the Cayley graph X of I1 is a collection of
complete graphs of size |Y|, with at each vertex |T’| edges leaving to other
complete graphs, and such that if each of these complete graphs is shrunk
to a point the resulting graph is a tree. The following theorem is then a
straightforward generalization of the argument given for PSL,(Z).
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THEOREM 8.5. With the notation introduced above, let = be any subgroup
of Il not intersecting {t" |t € T,~v € I1} and let F(t), G(t) be the “cogrowth”
series and circuit series of Z\I1. Let £ be the complete graph on |Y| vertices
and let Gg(t), G?(z‘) count the circuits and the non-closing paths respectively
in £. Define the function ¢ by

< 12 )¢: 1Ge
L+ (S| = Dr* 1 4 (Gg — GE)((|S| = 1)Ge + GZ)2

Then we have

E(@) ~ G((1D)9) -

9. FREE PRODUCTS OF GRAPHS

We give here a general construction combining two pointed graphs and
show how to compute the generating functions for circuits in the “product”
in terms of the generating functions for circuits in the factors.

DEFINITION 9.1 (Free Product, [Que94, Definition 4.8]). Let (£,*) and
(F,*) be two connected pointed graphs. Their free product £« F is the graph
constructed as follows: start with copies of £ and F identified at «; at each
vertex v apart from % in &£, respectively F, glue a copy of F, respectively
£, by identifying v and the % of the copy. Repeat the process, each time
glueing £’s and F’s to the new vertices.

If (E,S), (F,T) are two groups with fixed generators whose Cayley graphs
are £ and F respectively, then & x F is the Cayley graph of (Ex F,SUT).

We now compute the circuit series of & x F in terms of the circuit series
of £ and F. Let G¢, Gr and Gy be the generating functions counting
circuits in £, F and X = &£ = F respectively. We will use the following
description: given a circuit at * in &', it can be decomposed as a product of
circuits never passing through . Each of these circuits, in turn, starts either
in the £ or the F copy at x. Say one starts in & ; it can then be expressed
as a circuit in £ never passing through %, and such that at all vertices, except
the first and last, a circuit starting in F has been inserted. Moreover, any
choice of such circuits satisfying these conditions will give a circuit at x in
X, and different choices will yield different circuits.

Let Hg (respectively Hx) be the generating function counting non-trivial
circuits in & (respectively F') never passing through *. Obviously
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Let Lg (respectively Lx) be the generating function counting non-trivial
circuits in X’ never passing through x and starting in £ (respectively F).
Then

t
I — Lz

Lr() = Hr (

Le(t) = He ( )= Lr@),

) (L),

Indeed write Hg = > h, f". Then by the description given above

1 n—1
Lg :Z/i,,f’7(1 I ) y
— L

which is precisely the given formula. Finally

1

Gx = .
YT 1—Le— Ly

Writing Mg = t/(1 — Lg) and My = t/(1 — Lz), we simplify these
equations to

1 1/t

GX —=
l—(1—-55)—(1=55)  1/Me+1/Mg—1/t’
SO
| 1 1 1
9.1) — b = = : N
Me My 1 MgGr(Mg) MzGe(Mg) Gy

If f is a power series with f(0) =0 and f/(0) # 0, let us write f~! for the

verse of f; i.e. for the series g with g(f(®) = f(g(t)) = ¢ (for instance,

1) =t is equal to its inverse: inver attb Lo di~b
f(@) q ; the inverse of 47 is 4=k

From (9.1) we obtain Mg = (t1G£)~' o (tGx) and My = (1G¢)~! o(tGx);
so composing (9.1) with (tGx)~! we obtain the
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THEOREM 9.2.

1 1 1
o2 (G| (Ge) ! | (Gp) !

1
4

An equation equivalent to this one, though not trivially so, appeared in a
paper by Gregory Quenell [Que94], and, in yet another language, in a paper
by Dan Voiculescu [V0i90, Theorem 4.5].

We can use (9.2) to obtain by a different method the circuit series of
regular trees (see Section 7.3). Indeed the free product of regular trees of
degree d and e is a regular tree of degree d + e. Letting G, denote the
circuit series of a regular tree of degree d, we “guess” that

2(d — 1)
d—2+4d\/1—4d—- D’

Gy(t) =

and verify that the limit

2(d — 1 1
G1(f) = lim @1 = :
d—1d —24d\/1—4d— 12 1—1

is indeed the circuit series of the 1-regular tree. Then we compute

2

U
tGy) () = :
(tGa) (W) 2 d+dV1+ a2

if we define A, by

1 1 V1+4u? —1
Ad = ———=d ,

Gy~ (w) u 2u
it satisfies Ay + A, = ANy1. and we have proved that our guess of Gy 1s
correct for all d > 1, in light of (9.2).

As another application of (9.2), we compute the circuit series G(f) of the
Cayley graph of PSL,(Z) = (a,b | a®,b*) with generators {a,b,b~'}. This
graph is the free product of the 1-regular tree £ and of the 3-cycle F. We
know from Section 7.1 that
1 G — 1 —1
T2 T a1 =2

are the circuit series of £ and F. We then compute

V1442 — 1
2u ’
14+u—+1—2u+9%u2
2(1 — 2u) ’

Ge

(tGe)™ ' (u) =

(tGF) ' (u) =
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so after some lucky simplifications

G — | 1 )—1
W=7 ( 1/(tFe)~"(w) + 1/(tG )~ () — 1/u

Q- V1=2-52+68 + —1 4+ 41
N 2(1 — 2t — 562 + 6£%) '

(A closed form such as this one does not exist for (Z/2Z) x (Z/kZ) with
k > 3, because then the series G is algebraic of degree greater than 2.)

COROLLARY 9.3. If the circuit series of £ and F are both algebraic,
then the circuit series of &€ x F is also algebraic.

Proof. Sums and products of algebraic series are algebraic. If f satisfies
the algebraic relation P(f,f) = 0O, then its formal inverse satisfies the relation
P(t,f~1 =0 so is also algebraic.  []

Recall the notions of radius of convergence and p-recurrence given in
Definition 3.4.

LEMMA 9.4. We have
p(f) = sup(f 1))~ ,
1

where the supremum is taken over all t such that the series (tf)~! converges.
If f is p-recurrent, then also

p(f) = lim ()™

Proof. Clearly p(f) = p(ff); if tf converges over [0,p[ then (#)~!
converges over [0, o[ where o = pf(p) ; then we have lim,_,,(f)~! = p. The
second assertion follows because in this case o = oco. []

COROLLARY 9.5.  Let the circuit series of £, F and X =&+ F be Ge,
Gr and Gx respectively, and suppose all three series are recurrent. Then

1/p(Gx) = 1/p(Ge) + 1/ p(GF) .
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Proof. 'This follows from

, 1
1/p(Gx) = tl_lglo (Go)1
1 1 1
— I ~ 2 by (92
A% WG T e 1 WO

=1/p(Ge) +1/p(GF) —0. []

Note that the corollary does not extend to non-recurrent series ; for instance,
it fails if &€ = F = Z. Indeed then

Ge =Gr = p(Ge) = p(Gr) =1/4,

1
V1—42’
3

Gy = : Gxr)=1/V12.
i 0=V

10. DIRECT PRODUCTS OF GRAPHS

There are two natural definitions for direct products of graphs; they
correspond to direct products of groups with generating set either the union
or cartesian product of the generating sets of the factors. A general treatment
of products of graphs can be found in [CDS79, pages 65 and 203].

DEFINITION 10.1. If § is a set, the stationing graph on S is the graph
X =X with V(X) = E(X) = §, where for the edges s* = s“ =5 = s hold.

LEMMA 10.2. Let X be a graph, and & = X UZy be the graph obtained
by adding a loop to every vertex in X. Let Gy and Gg be the growth functions
for circuits in X and & respectively. Then we have ’

i 1 H01(1)

DEFINITION 10.3 (First Product). Let & and JF be two graphs. Their
direct product X = & x F is defined by
V(X) = V(&) x V(F)

and
E(X)=(E&) xZr)U(Ze X E(F)) .
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Note that if the graphs £ and F have respectively adjacency matrices £
and F, then their product has adjacency matrix E®@1+1® F.
In that case we have

G — 1 ng((l-l—u)t)Gj: ((1+u—1)z)du
Sl

2T

u

This is a simple application of the Laplace transform, that converts an
exponential generating function into an ordinary one and vice versa [AS70,
29.3.3]. Indeed, if we had considered exponential generating functions, the
formula would simply have been Gy = Ge¢Gr, as is well known (see [Wil90]
or [Sta78, page 102]).

As an example, let £ =F =7, s0 Gg¢ = Gr = \/11_—r7 Then

B 1 du
by = 2 /1 22Y(1/2 — 242
I Jgt \/(1 4(1 -+ L{) t )(L{ 4(1 + Ll) t )

2
= ZK(167%) = F( 1/2 1 1/2 ] 161%)
- |

where K is the complete elliptic function and F the hypergeometric series.
These functions are known to be transcendental ; thus the circuit series of Z?2
1s transcendental. This result appears in [GH97]. Numerical evidence suggests
the growth function for Z? is not even hypergeometric.

DEFINITION 10.4 (Second Product). Let £ and F be two graphs, and

suppose that for every vertex in £ and F there is a loop at it. Then their
direct product X = £ x F 1is defined by

V(X) = V(&) x V(F)

and

E(X)=E&) X E(F) .

Note that if the graphs £ and F have respectively adjacency matrices E
and F', then their product has adjacency matrix £ ® F.

In that case we have, again using Laplace transformations

Gt = | % Gg(Ll)Gj:(l’/Ll)du'
Sl

20T U

Note that with both definitions of products it is possible that the growth

function for circuits in the product be transcendental even if the growth
functions for circuits in the factors are algebraic.
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11. FURTHER WORK

It was mentioned in Subsection 3.3 how the main result applies to
languages. This a special case of a much more general problem:

PROBLEM 11.1. Given a language L and a set U of words, define the
desiccation Ly of L as the set of words in L containing no u € U as a
subword.

Give sufficient conditions on L and U such that a formula exist relating
OW) and O (Ly).

The special case we studied in this paper is that of
U=1{ss|seS}

and a sufficient condition is that L be saturated.

For general U this is not always sufficient: let S = {a,b} and L =
b*(ab*ab*)* be the set of words with an even number of a’s. Then if
U = {a*} there are 7 desiccated words of length 5 :

{b°, ab’a, ab*ab, abab*, bab*a, babab, b*aba )}
and if U’ = {b*} there are 6 desiccated words of length 5 :
{babab, ba*,aba’, a*ba*, a*ba, a*b} .

The growth series of I/ and U’ are the same, namely 7%, but the growth
series of Ly, and Ly differ in their degree-5 coefficient.

We gave in Section 9 a formula relating the circuit series of a free product
to the circuit series of its factors. There is a notion of amalgamated product
of graphs, that is a direct analogue of the amalgamated product of groups.

PROBLEM 11.2. What conditions on D,E,F are sufficient so that
1 1 1 1

— o+ _
(zGx)™' (G (ZGEp)T! (zGp)~!
where X = & xp F is an amalgamated product of €& and F along D ?

The formula holds if D is the trivial graph; but it cannot hold in general.
If £ = F is the “ladder graph” described in Section 7.4: the set of points
(i,j) with i € Z and j € {0, 1}, with edges connecting all pairs of vertices at
Euclidean distance 1, and D is Z, embedded as a pole of the ladder, then
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the amalgamated product X = £ xp F is isomorphic to Z*. The circuit series
of D, £ and F have been calculated explicitly and are algebraic. The circuit
series of X was shown in Section 10 to be transcendental; so there can exist
no algebraic definition of Gy in terms of Gp, G¢ and Gz. However, there
exists some relations between these series, as given by [Vo0i90, Theorem 5.5].

Given a graph X', one can construct a graph X® on the same vertex set,
and with edge set the set of paths of length < k in A'. Is there some simple
relation between the path series of X and of X® ? This could be useful
for example to obtain asymptotics about the cogrowth of a group subject to
enlargement of generating set [Cha93].

The equation (9.2) corresponds to Voiculescu’s R-transform [Voi90]. His
S-transform, in terms of graphs, corresponds to & x F with as edge set all
sequences (e,f) and (f.e), for e € E(£) and f € E(F). Is there an analogue
to Theorem 9.2 in this context ?

Finally, (9.2) computes the circuit series of a free product in terms of the
circuit series of the factors. A more complicated formula yields the path series
of a free product in terms of the path series of the factors. Such considerations
give another derivation of the results in Section 8.
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