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3. HYPERSPACES AND DUAL TREES

In this section, we assume that X is an n-dimensional simply connected

cubical chamber complex of nonpositive curvature, endowed with the cubical
metric.

HYPERSPACES

Let P be a fc-cell in I, 1 < k < n. Any subset of P of the form

{|} x [0, l]^-1, for any isometric identification of P with [0,1]*, is called a

wall in P. If Q is a y-cell of X contained in P, 1 <j < k, and IL is a wall
in Q, then there is precisely one wall V in P such that V D P W. Such

a wall V is perpendicular to Q in P. In particular, if Q is an edge, there is

precisely one wall V in P such that V n P is the midpoint of Q and V is

perpendicular to Q.

LEMMA 3.1. Let P be a k-cell in X and W a wall in P. Then resP
is isometric to res W x [0,1], where res W := |J V and the union is over the

walls V in cells ß G res P such that V D P W.

LEMMA 3.2. A wall W in a cell P extends uniquely to a minimal connected

subspace X Xw C X such that

(1) X is a union of walls;

(2) res y C X for any wall V C X.

Moreover,

(3) if X. intersects a cell P then X H res P res W for some wall W of P ;

(4) X is locally (and hence globally) convex; and

(5) X\X consists of two convex connected components.

Proof Existence and uniqueness of a connected subspace satisfying

Properties (1) and (2) is clear from what was said before. Property (3)

follows from the observation that otherwise it would be possible to find

in A a nontrivial geodesic (contained in X) with the same initial and final

point (belonging to the "selfintersection locus" of X). Property (4) is then

an immediate consequence of (3), Lemma 3.1 and Theorem 1.4(2). Property

(5) follows from the contractibility of X : we have to exclude the existence

of a closed curve in X that crosses X once. Now such a closed curve can

be contracted to a constant curve and a contraction can be put into general

position with respect to X. Then the number of transversal intersections with
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Z does not change mod 2. Since this number is 0 for the final constant curve,

it cannot be 1 for the initial curve. The two resulting components of X \ X

are (globally) convex since, by (3) and Lemma 3.1 they are clearly locally

convex.

We call the subspaces X as above hyperspaces in X.

Dual trees

From now on we assume that X is a simply connected foldable cubical

chamber complex of nonpositive curvature. Fix a folding F: X —» C of X onto

an n-dimensional cube C, n dimX. Label the walls in C by the numbers

1..... z? and the panels of C by the label of the corresponding parallel wall.

Lift these labellings by F to the walls and panels in the chambers of X.
Each hyperspace X in X is a union of walls of chambers of X, and the

labels of the walls in Z are the same. Thus we also obtain a labelling of the

hyperspaces. Two different hyperspaces with the same label are disjoint.
Denote by A/ the union of the walls with label z in the chambers of X.

Then Ais the union of the hyperspaces labelled z. Moreover, the intersection
of the boundaries of two different connected components of X \ A ; is either

empty or a hyperspace with label z. Therefore we can define a graph A* as

follows : the vertices of A* correspond to the connected components of X\A/ ;

two vertices are connected by an edge if the corresponding components are

adjacent along a hyperspace with label z. Observe that A* is a tree since the

complement of any of its edges is disconnected by the separating property of
hyperspaces, see Lemma 3.2(5). We call A* the dual tree to the system of
hyperspaces with label z. Note that in general A* may not be locally finite,
even if the initial complex X is. We endow A* with the length metric df
such that each edge has length 1.

Note that the panels of X with label i do not belong to the set A/,
1 < i < n. Thus we can define maps 77 : X —> A* as follows : a panel of X
is mapped by 77 to the vertex of A* representing the component in X \ A/
to which it belongs. This extends uniquely to all chambers of X so that a

chamber P is mapped by 77 onto the edge in A* representing the hyperspace
in X containing the wall of P labelled i and such that 77 is isometric in the
direction perpendicular to the wall with label z.

The same argument as in the proof of Lemma 3.2(4) shows that the
preimage rfl(p) of any point p G A* distinct from a vertex is a convex
subset of X. Moreover, if p is a vertex of A*, then the convexity of the
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subcomplex rfl(p) C X follows from foldability of links of X at vertices

in view of the following characterisation (see e.g. Lemma 1.7.1 in [DJS]): a

connected subcomplex K in a simply connected nonpositively curved cubical

complex L is convex if and only if for each vertex v of K the link Kv
is a full subcomplex of the link Lv (which means that a simplex of Lv

belongs to Kv whenever its vertices belong to Kv). The above properties

imply that if a: I —* X is a geodesic, then rz o a is (weakly) monotonie :

T[OG never turns. Furthermore, if a is not constant, then for each t G / there

are À j E {1..... /i} such that r; o a is injective on (t — eft]C\ I and rj o a
is injective on [A / + c) D /

Embedding into a product of trees

Consider the map r: X —* Ü/Li A* defined by r(x) (ri(v),..., rn(xj).
Clearly r is a nondegenerate combinatorial map of cubical complexes, that is,

it is isometric on each cell of X. By what we just said about the image of
geodesies under the maps rz, it follows immediately that r is injective. We

call r the canonical embedding of X into the product of trees Ü/Li A*.
Recall that df is the natural metric in A*. Define two metrics dp) and

d(2) on the product Yl'i=\

n n

(3.3) dmand d{1) (L^O2)2
/=1 /= 1

It is easy to see that d&) < d( i) < y/n • d(2), and hence the two metrics are

Lipschitz equivalent. Moreover, we have

PROPOSITION 3.4. 77ze map ^ A a biLipschitz embedding. More precisely,

if x and y are points in X, then

d(2)(r(x)f r(y)) < J(^.y) < dm(r{x), r(y)).

where d denotes the cubical metric on X.

Proof The first inequality follows from the fact that r restricted to any
chamber of X is an isometry. The second inequality is obviously true for x
and y belonging to the same chamber of X. It extends to arbitrary x and

y since for each geodesic a in X, rz- o a is monotonie and hence, up to

parameter, a geodesic in A*.
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EQUIVARIANCE PROPERTIES OF THE CANONICAL EMBEDDING

It follows from gallery connectedness of X that the folding map F : X C

is unique up to an automorphism of C, so that a group T acting by

automorphisms on X has a well defined homomorphism into the group

Aut(C) of all automorphisms of C. The kernel Ff of this homomorphism is

a finite index subgroup in T, it preserves all the sets Aand hence acts by

automorphisms on the dual trees A*.
From now on, we assume that F preserves the folding of X and hence the

labelling of the walls. Then T acts on the dual trees A* and the maps n are

equivariant with respect to these actions. Therefore the canonical embedding

r is equivariant with respect to the diagonal action of T on the product

[]'Pj A*. This completes the proof of the first assertion of Theorem 1 in the

introduction.
Since r is equivariant, it follows that Stab(T, x) C Stab(T, r(x)) for each

x e X, where Stab(G.p) denotes the stabilizer of a point p with respect to a

transformation group G.

Proposition 3.5. For each p e n'-Li t^ere a Point xp g % such

that Stab(T,p) C Stab(F, xp). In particular, if F does not have a fixed point
in X, then F acts without a fixed point on at least one of the trees A*.

Proof If p is in the image of r, then the assertion follows from the

injectivity of r. If not, let 6 be the distance of p to the image of r with

respect to the metric d^. Take the ball B(p, 28) of radius 26 about p
in (n"=i A/*j dm). The preimage r~l(B(p,26)) is then a bounded nonempty
subset of X by Proposition 3.4. Let xp be its circumcenter, i.e. the center
of the unique ball with smallest radius containig this subset, see [Ba, p. 26].
Since F acts by isometries with respect to d^), B(p,26) is fixed by each

automorphism in Stab(T,/?). Since r is equivariant and F acts by isometries

on X, each such automorphism fixes r~l(B(p,26)) and hence xp.

Our next proposition is a special case of a more general result of M. Bridson
[B2]. Together with Proposition 3.5, it completes the proof of Theorem 1 of
the introduction. For the convenience of the reader we include a short proof
adapted to our case of folded cubical complexes.

PROPOSITION 3.6. Let X be a simply connected, folded cubical chamber
complex of nonpositive curvature. Then any automorphism of X is semisimple,
i.e. elliptic or axial.
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Proof Let p> be an automorphism of A. If <p fixes a point p of A*,
then p can be chosen as a vertex or a midpoint of an edge. If p is a vertex,
then the preimage X' of p under r; is a closed and convex subcomplex
of A. If p is the midpoint of an edge, X' is a hyperspace and as a union of
walls, carries a natural cubical structure. In either case, X' is a closed, convex
and (p-invariant subset of A, and therefore p is semisimple if and only if
the restriction p\x> is semisimple. Since moreover X' is a simply connected

folded cubical chamber complex of nonpositive curvature and of dimension
lower than X, we can assume by induction on dim A that the action of p on
all the trees A* is axial.

Let ai be an axis of p in A* (unique up to parameter). Let X; r~l{ai).
Since rt is surjective, A; is non-empty. Furthermore, XL is a closed, convex
and (^-invariant subcomplex of X.

Set Y\ :m X\. The image of Y\ under r2 is path connected and ^-invariant,
hence contains a2. Let Y2 Y\ fl X2. Then Y2 is non-empty, closed, convex
and (^-invariant. By induction we get that Y X\ Pi... HXn is a non-empty,
closed, convex and ^-invariant subcomplex of A. It is then sufficient to prove
semisimplicity for the restriction p\y. Note that Y r~l(F), where F Rn

is the flat

F {(ai(ri),..., I e R}

in the product of trees. Now p operates as a translation on F, hence the

displacement of p on F is constant, say 6. Since r is injective, we can
consider Y as a closed subcomplex of F, namely a union of chambers. The

metric on Y is the induced path metric. It follows easily that there are only
finitely many possible values for the distance in Y from a point x to its image

px, if the location of x in its chamber is given.

4. Nonexistence of free subgroups

In this section we discuss the proof of Theorem 2 of the introduction. We

assume throughout this section that A is a simply connected folded cubical

chamber complex of nonpositive curvature and that T C Aut(A) is a group that

preserves the folding of A (this can be always assumed by passing to a finite
index normal subgroup if necessary) and does not contain a free nonabelian

subgroup acting freely on A. By equivariance of the maps u, the same holds

for the actions of T on the trees A*. Up to a subgroup of index two, there

are three possibilities for each particular i [PV] :
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