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NORMS FROM CYCLIC EXTENSIONS OF Q(r) 371

N(r,bu...,bd) fir)fi

where fi G Qv is very close to 1 ; in fact fir) is near to f(av), which is

nonzero. By the previous remarks, /i~l is in the image of N(r,xi,... ,xf) on

Qdv, hence the same must be true for fir), by the basic multiplicative identity

for N. In particular fir) will be a norm from Qv(Pr) to Qv

Let now S consist of the elements of Q which are not poles or zeros

of /, which satisfy [Q(PS) : Q] d and which are sufficiently close (in the

mentioned sense) to av, for each v G X. We have proved that fis) is a norm

from QviPs), for all s G S and for all places v. By Hasse's theorem, fis)
is a norm from QiPs), so S C Nf. On the other hand S HZ contains the

complement of a thin set in an arithmetic progression, whence Nf cannot

satisfy the conclusion of the Theorem (or of Corollary 1), as required.

4. An example for the non-cyclic case

We show that assuming that L/K is cyclic is essential in the Theorem (as

in the number-field case, as shown in [CF, Ex. 5]).
To describe a counterexample, define L - Qit, yj4t + 3, yj4t + 7), fit) t2.

We proceed to show that N C Nf. We have to show that for all large integers

n, n2 is a norm from L(ri) : Qiy/4n + 3, y/4n + 7). By [CF, Ex. 5.1 and

5.2, p. 360] it is sufficient to show that the local degree [Lin)w : Qp] is 4

for some prime p. Observe that the Jacobi symbol (4^+7) — 1-

Hence there exists some prime p dividing 4n + 7 with an odd multiplicity
and such that -1. Then p ramifies in L(ri) and the residual degree
is 2, proving the claim. Observe that the first conclusion of Corollary 1 does

not hold for Nf.
On the other hand, t2 is not a norm from L to K. Otherwise by [CF, Ex.

5.1] we could write t as the product of three norms from the three quadratic
subfields of L. In other words we could write nontrivially

q2(t)t (4f(0~(4 t + 3)bj(t))(al(t)-(4t+l)bl(t))(al(t)-(4t + 3)(4t +l,
where q, an bj e Q[r]. We may suppose that at and bt are coprime for each
i, otherwise we can divide out a common factor. Now, putting 0 we get
a contradiction.
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