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NORMS FROM CYCLIC EXTENSIONS OF Q(?) 363
3. PROOF OF MAIN RESULTS

To prove the Theorem we start by using the following result of Tsen (see
e.g. [0Oj, Cor. 3.12, p. 42] or [P, §19.4]): every homogeneous non-constant
form over Q), of degree d, in d+ 1 variables Xy, ...,Xys admits a non-
trivial zero in Q[f]%t!. (This is relevant also for the above-mentioned Faddeev
sequence.)

Applying this claim to the form N(t,Xi,...,Xs) — X&f(H) we find

a nontrivial zero with X; = x(f) € Q[1]. Suppose xp(t) = 0. Then
N(t,x1(2),...,x4(t)) = 0. But this cannot happen unless x;(f) = 0 for all
i > 0. In fact, wy,...,wy are linearly independent over Q(?); hence they

are linearly independent over Q(¢), since L/Q is regular (we are using [We,
Ch. I, Prop. 7]). Therefore x(f) is nonzero and dividing everything by x4 we
see that f is representable by N over Q(f). Let N* denote the norm from
QL to Q(#). Then there exists ¢ € QL such that

(1) f=N"(p).

REMARK 1. The proofs of Tsen’s result referred to above are quite simple.
Moreover they yield the more precise result that, if the relevant form has
coefficients in Q[¢], of degree < D, then a solution may be found where the
unknowns have degree < max(0,D — d + 1). This bound may be important
in effectivity questions (as in §6).

Let Go := Gal(Q/Q). Then Gq acts on QL/L. We define, for o € G,

(2) Yo = —— € QL.
o(p)

It is immediately shown that f € N*(L*) would follow (against the
assumption), provided ¢, is still of the shape ¢'/o(¢’), but with N*(¢') = 1
(see the end of the proof). Accordingly, our aim will be to prove this
representation for ., assuming the conclusion of the Theorem to be false.

Let k be a number field such that ¢ € kL. Enlarging k we may assume
that it is normal over Q and that all zeros and poles of all the functions o(p)
are defined over k. We let G = Gal(k/Q) and observe that 1), depends only

on the image of ¢ in G. Therefore from now on we let o run through the
finite group G.

Applying o to (1) we see that N*(¢,) = 1. To exploit this fact, let v be
a generator for the Galois group I' := Gal(L/K). By regularity L and k are
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linearly disjoint over Q, so the Galois group of kL over K is isomorphic to
G x I'. By Hilbert’s theorem 90 for the cyclic extension kL/k(t) (with Galois
group isomorphic to I') for each v, there exists L, = L, € (kL)* such that

— LG

L)

Observe that the sets of ¢, and L, depend only on ¢ (not on k). Therefore
we may assume to have chosen k such that all poles and zeros of the L, are
defined over k.

Equation (2) yields 91, = 1. Therefore, by (3) we see that OL, is
invariant by -y, so it lies in k(¢). We denote

3) Yo

(4) Qo,r = OLy = Lyo(L,)L} € k(1)* .

To get the alluded representation of ), it would be sufficient to prove that
L, in (4) could actually be chosen in k(¢)*. This might not be true, but from
Qo+ = 0L, we find

QO’,T = QO’,’T,LLO—(QT,/J,)(QUT,/_L)_I

for all o, 7, u € G. Take the product of these equations over u € G. Letting
n be the order of G and defining R, :=[] ,.; Qo we obtain

(5) Q. =0R,, R, € k()" .

Observe that our choice of k ensures that poles and zeros of all the R, lie
in kU oo. (In cohomological language, O, is a 2-cocycle in k(z)* for the
action of G, and is a coboundary in (kL)*, by definition (4). We wish to
show that it is a coboundary in k(z)*, which might not be true without further
information. Formula (5) shows however that Q" is indeed of that shape. Our
direct calculation reflects the classical fact [CF, Ch. 1V] that the order »n of
the group kills the cohomology groups.)

We now refer to some theory of thin sets, as presented in [Se2]. We may
view L as defined over k. Let, as in the introduction, P; be a point of C
above s € P!. The set of s € k such that Gal(k(P)/k) # T is a thin set in k
[Se2, Prop. 3.3.1]. By [Se2, Prop. 3.2.1], the intersection of this set with Q
is also thin. Define S to be its complement in Q.

Note that the property Gal(k(P;)/k) = I" implies that the fields k and Q(P;)
are linearly disjoint over Q. Therefore Gal(k(P;)/Q) = G x I'. Frequently
in the sequel we shall identify G (resp. I') with G x {1} (resp. {1} x I).
Finally observe that such properties imply that the action of I" on k(C) = kL
commutes with specialization of rational functions in k(C) at P;.
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In view of these facts it will cause no confusion if we continue to use the
notation N* both for N,]:(PA‘) and for NS(P ),
Let §' =SNN;. For s €8 there exists a(s) € Q(Ps) such that
N*(als)) = f(s) .-
Specializing (1) at P, we also obtain N*(¢o(Py)) = f(s), whence
o(P,) = a8)E(s),  where a(s) € Q(Py), &(s) € k(Ps) and N*&@s)=1.

By Hilbert’s Theorem 90 for the cyclic extension k(P;) /k we may write

(6) £(s) =

where p(s) € k(Py) .

Also, since k and Q(P,) are linearly disjoint over Q we have o(a(s)) = a(s)
for all o € G. Therefore specializing (2) at P, we get

£(5)
a(€(s)

(Note that, since N*(£(s)) = 1, this equation is the specialization of the sought
representation for 1), .) Recalling (3) and (6) we get

Lo(Ps) __p(s)/o(p(s)
V(Lo (Py))  Y(p(s)/o(p(s)))

zﬁa(Ps) -

namely

p(s)
a(p(s))

(We tacitly disregard all the finitely many s € S’ with the property that some

of the finitely many involved functions either vanishes or is not defined at
Py ]

(7) L, (Ps) = Lo (), where ﬁ)/(/vLO'(S)) = o ($), Le. MJ(S) €k.

By (4), (5) and (7) we get
OR5(Ps) = Oy (s)" .

On the other hand R, € k(t), so R,(P;) = R,(s) € k. By Hilbert’s Theorem
90 for the extension k/Q we get the existence of [(s) € k such that

s
() B(s)

R, (s) = mﬂa(s)n-

Our next purpose is to show that, if the sought conclusion is not true,
then these numerical equations actually come from an identity (see the
lemma below). This will be done by comparison of functional and numerical
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factorizations. To carry out this program, we start by constructing some relevant
rare sets. First of all, fix a number p, sufficiently large to justify the subsequent
arguments. This number is to depend only on the R,’s, hence only on f.

Consider the set of algebraic numbers r which are zeros or poles of some
R, . We have assumed that such a set is contained in k, and the same is true
of its G-orbit, which we denote by €2. Naturally  is a finite disjoint union
of G-orbits of single elements.

For r € Q and for ¢ € G, define m,(r) as the multiplicity of r in R, .
Consider a G-orbit O C Q and select once and for all »r = ro € O, so
O ={o(r):0 € G}.

Let h € G satisfy h(r) = r. Let P(h) be the set of prime numbers p > pg
unramified in k& and such that the decomposition group of some prime ideal
m of k above p is generated by A. By Chebotarev’s theorem such a set
1s infinite and actually the quantitative formulation [Nar, Thm. 7.11 (resp.
7.117)] asserts that P(h) has a positive Dirichlet (resp. natural) density.

Let p € P(h) and let v = v, be the order function on k with respect to
7. Observe that 7 lies above a prime of the fixed field of 4 which has degree
1 over p. Since h fixes r, such a fixed field contains Q(r). In particular there
exists an integer r; € Z such that v(r — r;) > 2. Observe that for a rational
number x, we have that v(x — r;) =1 1s equivalent to v(x —r) = 1.

We put A(O,h) = Upep(h){x € Q : ord,(x —r) = 1} and we define
R(O,h) = Q\ A(O,h) to be the corresponding rare set. The kernel of the
proof is the following lemma (compare with (8) above).

LEMMA. Suppose that for each O, h there exists s € S’ which does not lie
in the set R(O, h) just defined. Then there exist rational functions B, U, € k(t)

such that

B
RJ:ﬁUg forall 0 € G.

Proof of Lemma. With the above notation, define a function v: O — Z/(n)
by

©)) v(o(r)) ;= —mgy—1(r) (mod n).

We contend that this definition is a good one. To verify this, suppose that
o1(r) = op(r). This is equivalent to o, = o1h where h(r) = r. By assumption
we may pick s € §’ outside R(O, k), whence there exists p € P(h) such that
v(is—r)=1v,(s —r)=1.
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By (8) we have v(R-1(s)) = v(B(s)) — (o7 (B(s))) (mod n) for i=1,2.
Therefore

V(R ,—1(8)) = v(R,-1(5)) = —v(o; ' (B(s)) + v(h oy H(B(s)))  (mod n).

On the other hand, v = v o h~!, since A~! lies in the decomposition group
of 7w and so

(10) 'U(RO_I—I(S)) = ’U(RUZ—;(S)) (mod n) .

Now observe that we can write R,(f) as the product of a nonzero constant
¢, € k times a product [], .o(r —u)"®, so if we suppose that p > po is so
large that all ¢, are coprime to p, we have

V(R (8)) = Y mo(u)v(s — u).
ueQl
Since v(s —r) =1 we see that if py has been chosen large enough, we have
v(s —u) =0 for all u € Q\ {r}. In fact, if p > py is large we may assume
v(s —u) > 0 for all u € Q and if we had v(s — u) > 0 then v(u —r) > 0.
But if u # r, u — r has finitely many prime ideal factors. If p is coprime
with all of them, the assertion follows.
In conclusion we deduce v(R,(s)) = my(r)v(s—r) = m,(r) and comparing
with (10) we get

mal_l(r) = md;l(r) (mod n),
which is precisely what we want, in view of (9).

By equation (5) we have that OR, = R,0(R-)R;! = Q% _ is an n-th

g, T

power in k(7). Recalling that m,(u) is the multiplicity of u in R,, we see
that m, (o~ 'u) is the multiplicity of u in o(R,). Computing the multiplicity
of u in OR, we then get

Mo () = mg () + m, (o~ w) (mod n) .
In this congruence replace o by 77! and 7 by o. We get, for all u € Q,
Mo—1o() = m—1(u) + my(7(u)) (mod n).
Putting u = r and using our (good) definition (9) we may rewrite this as
(11) v(1(r) — (o' 7(r) = my(7(r))  (mod n).

Finally, take any integer representatives (denoted in the same way) for the
classes v(7(r)) modulo n, 7 € G, and do this for all G-orbits O C Q. Define
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Bl(t):H H (t = 7(ro))" )

O 1(rp)€E0

Congruence (11) shows that R,(B;/c(B;))~! has all its zeros and poles in k,
with multiplicity divisible by n, so is of the form ¢,Z", where ¢, € k and
Zs € k(t). Evaluating at some s’ € §' we see from (8) that ¢, = p(6/0(3))
for some [, u, € k. Now it suffices to define B := BB, U, = p,Z, to
obtain the statement of the lemma. [

Under the assumptions of the lemma we get 0R, = OUZ and on the
other hand R, = Qf . = OL] by (4) and (5). Therefore O(U,/Ls)" =
Therefore there exist n-th roots of unity (, . € k such that

(12) Ly /Uy) = Cor -

Specialize this equation at P, for some fixed s € S’ and use equation (7) to
obtain

a(ﬂ/a(s)/Ua(S)) - CO’,T .
Observe that A\, := s (s)/Uy(s) € k. Also, we have

)\U

By Hilbert’s Theorem 90 for the extension kL/L we derive the existence of
¢ € kL such that

Lo =AU, —2
o(¢)
Recall that A\, U, € k(¢) is invariant by I'. Therefore by (3) we have
0, = 219
7 a(g/v(9)
Comparing with (2) we see that 7 := ) ( 5 is invariant by G, hence lies

in L. But N*(n) = N*(¢) = f, against the assumptions of the Theorem.
Therefore for some O,k as above, the element s in the assumptions of the
Lemma cannot exist, proving that S C R(O,h), as desired. L]

Proof of Corollary 1. By [Se2, Thm. 3.5.3] the complement of a thin
set in Q contains an arithmetical progression (see also [Sch2]). Therefore the
first assertion follows.

As to the second one, it suffices to prove the stated estimates for N
replaced both by a thin set and by a rare set. For the first case, see [Se2,
Ch. 3] for much sharper estimates. In the case of a rare set, the estimates
follow in a rather standard way from sieve inequalities. We outline some
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arguments using the large sieve, similarly to [Se3]. We recall from [Se3] the
following statement (see the Théoréme on p.401), entirely analogous to a
corollary of the Davenport-Halberstam Theorem, as discussed e.g. in [Se2,
Ch. X].

Let Q be a subset of Z"" such that for all primes p its reduction £,
modulo p* contains at most 7/pp2” elements. Then, putting Q(x) := QN[0,x]",

we have
#Q(x) < (20" /L),
where L(z) = Z* i<z le d(l—;’i) and the star means that summation is

restricted to square-free positive integers.

We use this result with n = 1 to estimate the number of positive integers
< x 1n a rare set Q. (The case of rationals of bounded height in a rare set
becomes entirely similar by taking n = 2 and associating to a fraction a/b
in lowest terms, the point (a,b) € Z?))

Let P be a set of primes associated to the rare set 2. By definition the
reduction €2, modulo p? contains at most p?> — p + 1 elements for p € P.
Therefore we may take v, = 1 — zip for p € P and v, = 1 otherwise. We

find .
L(z) > Z W ;

d<z
where the summation now runs through square-free integers whose prime

factors are all in P and where 7(d) is the number of divisors of d. For s > 1
we have the identity

1 o]
H(1+2—ps):z <

peEP
Put s =1+ lofofgo;“ 1 + p, say. Then
-
> <y a <</ = — < 1.
W )d d>z pzr

Also, L) = 37 wr = X ase raw = 2 = + O(1). On the other

hand,
log(> " (d)ds) =Y log(1 + —) >3 p

peEP peEP
Since P has positive lower Dirichlet density, for large 7z the left side is
> fylog s—7 Where v is a fixed positive real number. These inequalities imply
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L(z) > (101;1%)7 4+ O(1) and an estimate Q(x) < logﬁx follows, where 0 is

any positive number < 7.

Proof of Corollary 2. It suffices to show that the assumptions for
Corollary 2 imply that Ny does not satisfy the conclusion of the Theorem.

Assume first that v ¢ 2. Let ¢ € Q,(C) be such that N*(¢) = f. We
wish to specialize suitably this equation, but first we may have to modify ¢.
The divisor div(yp) is rational over Q,. Let F be a prime divisor of Q,(?)
which does not appear in f. We may write

F=elG +---+G,)

where the G; are prime divisors of L, rational over Q, and e = ey 1is the
ramification index. Since F' is I'-invariant, in fact the G;’s constitute just the
I-orbit of G;, so we may write G; = ¥"~!(Gy). By taking norms we have
dF = er)  .ro(Gy). Let > m;G; be the part of div(y) made up with the
G;’s. Since N*(p) =f we have ) .m; = 0. Hence we may write ) m;G; as
a sum of terms G; — Gj, i <j. In tumn, G; — G; = Z{;i(Gs — Ggy1) 1s of the
form G — v(G) for some Q,-rational divisor G. These arguments prove that
we may write the divisor of ¢ in the form D; + (D — (D)), where Dy,D
are Q, -rational and D; is made up of zeros or poles of f.

Let now s € Q and let P; be a point of C with #(P;) = 5. We assume
that f(s) is defined and nonzero. In particular D; does not contain any 7(P;)
for 7 € I'. We also assume that Q(P;) has degree d over Q. This holds
outside a thin set 7y of Q. We embed Q(P,) into a finite extension of Q,.

Now, there exists a divisor A, rational over Q,, such that D — A does
not contain any point 7(Py). Let g € Q,(C) be a rational function such that
no 7P appears in A + div(g). Then, the divisor of ¢ := wg/v(g) does not
contain any 7(P;). Observe that N*(1)) = N*(¢) = f. On the other hand we
may evaluate at P; each factor appearing in the norm and we find that f(s)
is a norm from Q,(P;).?)

Assume now that v € X. For r € Q,, we have that N(r,xy,...,xz)
has an image on Q¢ which contains some neighborhood of 1 in Q,, the
neighborhood depending only on v. In fact such an image contains the set
of d-th powers in Q,. Now, let a, be as in (b) and suppose that r € Q,
is very near to a, in the w-adic topology. We have that f(a,) equals some
nonzero value N(a,,bi,...,bs) with b; € Q,. Then N(r,by,...,b,) is very
near to f(r), so we may write

2) This is true even if [Qy(Ps) : Qu] < d. In any case N*(¢(Pys)) is a product of
factors, each a norm from Q. (Ps).

4
[Qu (Ps):Qy]
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N(rabla"’)bd):f(r)lu’

where 1 € Q, is very close to 1; in fact f(r) is near to f(a,), which 18
nonzero. By the previous remarks, p~! is in the image of N(r,xi,...,Xq) on
Q¢, hence the same must be true for f(r), by the basic multiplicative identity
for N. In particular f(r) will be a norm from Q,(P,) to Q..

Let now S consist of the elements of Q which are not poles or zeros
of £, which satisfy [Q(P;) : Q] = d and which are sufficiently close (in the
mentioned sense) to a,, for each v € . We have proved that f(s) is a norm
from Q,(P,), for all s € S and for all places v. By Hasse’s theorem, f(s)
is a norm from Q(P;), so S C N;. On the other hand SN Z contains the
complement of a thin set in an arithmetic progression, whence Ny cannot
satisfy the conclusion of the Theorem (or of Corollary 1), as required.  []

4. AN EXAMPLE FOR THE NON-CYCLIC CASE

We show that assuming that L/K is cyclic is essential in the Theorem (as
in the number-field case, as shown in [CFEF, Ex. 5]).

To describe a counterexample, define L = Q(t, /4t + 3,/4t +7), f(t) = #
We proceed to show that N C Ny. We have to show that for all large integers
n, n* is a norm from L(n) := Q(v/4n +3,/4n+ 7). By [CF, Ex. 5.1 and
5.2, p.360] it is sufficient to show that the local degree [L(n),, : Q,] is 4
for some prime p. Observe that the Jacobi symbol (3:;1%) = (4,:7) = —1.
Hence there exists some prime p dividing 4n 4+ 7 with an odd multiplicity
and such that (i’%'é) = —1. Then p ramifies in L(n) and the residual degree
is 2, proving the claim. Observe that the first conclusion of Corollary 1 does
not hold for Ny.

On the other hand, #* is not a norm from L to K. Otherwise by [CF, Ex.
5.1] we could write ¢ as the product of three norms from the three quadratic
subfields of L. In other words we could write nontrivially

g* (0t = (aj (1) — (4t +3)bT())(a5(t) — (4t + T3 (1)) (1) — (A + 3)(At + TIHA(D))

where g, a;, b; € Q[t]. We may suppose that g; and b; are coprime for each
1, otherwise we can divide out a common factor. Now, putting r =0 we get
a contradiction.
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