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A LOCAL-GLOBAL PRINCIPLE
FOR NORMS FROM CYCLIC EXTENSIONS OF Q(r)
(A DIRECT, CONSTRUCTIVE AND QUANTITATIVE APPROACH)

by Umberto ZANNIER

ABSTRACT. Let L be a cyclic extension of Q(z), regular over Q. We are concerned
with the representability of a rational function f € Q(f) as a norm Né(,)(g) where
g € L. This problem was treated by Davenport-Lewis-Schinzel in the special case
[L : Q()] = 2. They obtained a kind of local-global principle by proving that f is
representable in the required way if, for a suitable set of integers n, f(n) is likewise
representable as a value of the norm-form specialized at r = n. In case [L: Q(?)] is
arbitrary, it does not seem easy to extend their arguments, but a similar conclusion is a
corollary of certain results on specializations of Brauer groups, obtained independently
by several authors. Here we treat the general case by means of a direct method, which
is self-contained as far as cohomology is concerned. Moreover our arguments are
constructive and allow one to decide about the above-mentioned representability and
to produce solutions when they exist. As in previous work by Serre, the method yields
quantitative estimates, via sieve inequalities. We also discuss several other relevant
questions.

1. INTRODUCTION

The well-known Hasse local-global principle for a cyclic extension L/K
of number fields (see e.g. [CF, p.185]) asserts that an element a € K* is a
norm from L* (i.e. of the form N]%(b) for some b € L*) if and only if for
every place v of K and some (= all) place(s) w of L, with w|v, we have
a e N,Igif’(LfU) (where the subscripts denote completions). Actually Hasse’s
theorem holds more generally when L/K is any cyclic extension of global
fields; these are either number fields or function fields of curves over finite
fields, namely finite extensions of some field F,(f).

It seems natural to investigate what happens when L/K is a cyclic extension
of function fields of curves over number fields. Let us concentrate on the case
when the base is rational, namely K = k(¢), where k is a number field.
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The constant extension case, i.e. the case L = ky(t), k1 /k cyclic, was treated
by Davenport-Lewis-Schinzel for £k = Q [DLS1] (and generalized by Schinzel
to general k£ [Schl, Thm. 42]). The case of an arbitrary quadratic extension
L/K was again considered by Davenport-Lewis-Schinzel. Among others, they
proved ([DLS2] or [Schl, Thm. 37]) the following elegant statement.

Let A,B € Qlt] and suppose that every arithmetic progression contains
an integer n such that the equation x*A(n) + y*B(n) = z*> has a nontrivial
solution (x*,y*,z*) € Z3. Then the equation X*?A+Y?B = 7Z? has a nontrivial
solution (X*,Y*,Z*) € Q[t]°.

(For extensions to number fields and several variables see [Schl], section 24.)
To put the statement in the present context one considers the quadratic function
field extension Q(z, /A())/Q(#); the corresponding norm-form is z> — A(f)x>
and we want to represent B(f) by this form, with x,z € Q(¢).

The proof of this quadratic theorem used a descent procedure containing
some features of Legendre’s proof (as presented e.g. in [Sel, p.74]) of the
local-global principle for ternary rational quadratic forms (a particular case of
Hasse’s theorem). The methods do not seem to extend to a cyclic extension
L/K of arbitrary degree.

Now, we recall that the elements in a field which are not norms from
a cyclic extension, give rise to nontrivial elements of the Brauer group of
that field. In fact, let L/K be finite, with cyclic Galois group I'. Then, by
[CF, Thm. 5, p.108], the cohomology groups ﬁq(I“, L*) are periodic in q,
of period 2. In particular, H%(T',L*) = H*(I',L*). Now, on the one hand
we have ﬁO(F, L*) = K* /N,Ig(L*) directly from the definition [CF, Ch. IV].
On the other hand, by [CE, Cor. 1, p.125], the inflation map yields an
injection H*(I',L*) — H*(Gal(K/K),K") =: Br(K), the Brauer group of K.
In conclusion, we get the injection referred to above:

K* /NE(L*) — Br(K).

This link puts our basic question into the context of specializations of
Brauer groups, a topic to which a number of papers have been devoted. We
mention e.g. [Se3] (considering 2-torsion of the Brauer group) and [FSS]. In
the latter paper the concept of Brauer-Hilbertian field is introduced and it is
proved that global fields are Brauer-Hilbertian. Taking into account the above
remarks, this implies in particular (compare with the Theorem below) : if f(z)
is a norm from the residue field extensions, for almost all ty € k, then f(t) is
a norm from L.
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(A version by Voronovich [V] involving arithmetic progressions is also
quoted in [FSS].) The proofs make use of the Faddeev exact sequence (for a
review see [CThSDy]) and of other tools from Galois cohomology.

It is the purpose of the present paper to generalize by a direct method the
above-mentioned result in [DLS2], to the case of an arbitrary k-regular (i.e.
LNk = k) cyclic extension L/k(). Our language will avoid any reference to
Brauer groups and to the Faddeev sequence; our tools from cohomology will
be practically limited to Hilbert 90, recalled below. Therefore the paper will
be self-contained in this respect. However we remark that the main ideas are
in fact implicitly near to the above quoted concepts.

Our arguments yield a description of the exceptional set of specializations
implying a result for arithmetic progressions (as in [DLS1,2]) and quantitative
bounds (similarly to [Se3]). In addition, the proofs are constructive and
allow one to decide whether a given f is a norm from L and to produce
a corresponding representation when it exists. This is carried out in §6.
(Though part of our Theorem follows from the quoted results on the Brauer
group, effectiveness seems not to have been considered and it is not clear to
what extent the quoted proofs on the Brauer group may be made completely
effective.)

To simplify the exposition we shall restrict ourselves to the case k = Q.
The arguments however work for any number-field k.

To state the results precisely, let L be a cyclic extension of K = Q(?),
of degree d, L regular over Q. Let wy,...,w; € L be a linear basis for
L/K . Even if it does not matter for the results, we shall assume for technical
reasons that it 1s an integral basis for L over Q[z]. We consider, for variables

Xi,...,X4, the norm form
N, Xy, ..., Xg) = Ng(Xjwy + - - - + Xqwy) € k[AIXL, - . ., X4].
Plainly there is a multiplicative identity
N Xy, ..., XN, Yy, ..., Y) =N, Zy,...,7Zy)

where the Z; are bilinear functions of the X;, Y; with coefficients in Q[z].
From [Se2, Def. 3.1.1] we recall a definition: A set of rational numbers
is called “thin” if it is contained in a finite union of sets of type ©(X(Q)),
where X/Q is a curve and ¢: X — P! is a rational map of degree > 2.
Also, to simplify the statements it will be convenient to introduce a little
more terminology. Let P be a set of prime numbers, of positive lower Dirichlet
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density '), and for p € P let r, be an integer. Put

A= U{xEQ:ordp(x—rp)zl}.

peEP

Below we shall say that a subset of Q is rare if it is disjoint from a set A
obtained in this way.

For a function f € Q(f) we define Ny to be the set of rational numbers
s such that f(s) is of the form N(s,xi,...,x;) for some x; € Q. Also, for
a set § C Q we define S(x) to be the number of elements of S with height
bounded by x.

In the proofs we shall also use an equivalent geometrical language. Namely,
L is the function field of a nonsingular absolutely irreducible curve C/Q.
The extension L/K corresponds to a morphism ¢: C — P! defined over Q.
We may lift the point s € P'(Q) to a point P, € C(Q) with #(P,) = s.
We could replace Ny with the set of s € Q such that f(s) is a norm from
the residue field extension Q(P;)/Q. Such conditions are indeed equivalent if
[Q(Ps) : Q] =d = [L: K] and actually the proof will use only such values.

THEOREM. Assume that f € Q@t)* is not in Ng(L*). Then Ny is contained
in a union of a thin set and a rare set.

(We note that it is not true in general that Ny is thin: take e.g. L = Q(W1),
f(t) = —1. Then N; consists of the nonzero rational numbers which are sums
of two squares, and 1s not thin [Se2, Ex. 3, p.20].) In [Se3] the description
of the exceptional specializations i1s somewhat similar, but more precise. As
in that paper, the structure of thin sets and a sieve argument imply at once
the following corollary.

COROLLARY 1. Let f be as in the Theorem. Then the complement of Ny
in Q contains an arithmetical progression. Also, we have N¢(x) < x? / log‘sx
and (NyNZ)(x) < x/ logé5 X, where 0 is a positive number (which may depend

on f).
(In [Se3], a 6 > 1/2 is given explicitly.) Combining the Theorem with
Hasse’s theorem mentioned above we shall obtain another kind of local-global

principle, 1.e.

) ie. liminf, 4 = cpp*/log(=15) > 0
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COROLLARY 2. Let X be a finite subset of places of Q. Assume that
(a) For all places v & X the function f € K is a norm from QyL to Q..
(b) For all v € X there exist a,,b;, € Q, with

Then f is a norm from L.

(In §5 we shall see that (a) is not sufficient in itself.) Colliot-Thélene has shown
me a different proof of this corollary using the above-mentioned Faddeev exact
sequence, actually removing the regularity assumption. The result reminds one
of the work by Pourchet (see [Raj, Lemma 17.4]) and by Colliot-Thélene,
Coray, Sansuc [CThCS, Prop. 1.3]. (For instance the last paper contains the
proof that a multiplicative quadratic form over k(¢) represents f over k(¢) if
and only if it represents f over k,(t) for all places v of k.)

The paper 1s organized as follows. In §2 we shall recall a few basics from
cohomology. In §3 we shall prove the theorem and its corollaries. In §4 we
shall discuss a simple counterexample to an analogous result when Gal(L/K)
1s a four-group (similarly to the number-field case). In §5 we shall discuss
how the assumptions for Corollary 2 are equivalent for large p both to the
solvability of congruences f = N(g) (mod p) and to the existence of solutions
over the completion of Q,L under the Gauss norm. Incidentally, we shall
prove that if a representation of f by N exists at all with the x; € k(¢), then
some representation will have the x;’s of degree bounded explicitly only in
terms of degf and genus and degree of kL/k(r). This seems to have some
interest in itself. These observations lead also to the construction of varieties
satisfying the usual local-global principle. Finally, in §6 we shall discuss how
to find effectively a possible representation of f by N.

2. A COUPLE OF FACTS FROM COHOMOLOGY

Let G be a finite group acting on an abelian group M. For a function
§:G—M, 0— & we denote (the usual coboundary operator)

) =0E): G =M,  (0,7)— & +0(&) — &

With this notation (but writing M multiplicatively) we now recall Hilbert’s
Theorem 90 :
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Let ky /k be a finite Galois extension with group G and let £&: G — ki be a
function satisfying 0(§) = 1. Then there exists o € ki such that £, = o/o()
for all o € G.

The usual proof (see e.g. [CF, Prop. 3, p.124]) is simple and runs as
follows: For x € k; form the sum o = ZUEG ¢,0(x). By a well-known
elementary result of Artin, we may choose x € k; such that o # 0. A quick
computation using the assumption on & then shows that « has the stated
property.

An easy corollary (the original Hilbert’s 90) is that, if G is cyclic generated
by g, then every element a € ki such that N,fl (@) =1 is of the form b/g(b)
for some b € k. To derive this conclusion it suffices to apply the above
statement to the function on G defined by £,n = [[Iy ¢'(a) (which is well
defined).

In §6 on effectiveness we shall need a simple result on permutation modules
for the action of a finite group G. Such a module is simply a free abelian
group on which G acts, which moreover has a Z-basis permuted by G. We
have:

Let M be a permutation module and let &: G — M satisfy 0(&) = 0.
Then there exists m € M such that £, = m — o(m) for all 0 € G.

We give a short argument for completeness. We may write M as a direct
sum of permutation modules, each of which has a Z-basis which is a G-orbit.
It suffices to prove the claim for each direct factor. Write the mentioned basis
as {g(b)} for a certain b € M and ¢ running through a set of representatives
for G/H, H being the stabilizer of b.

We sum the equations &, = &, + 0(&,) over 7 € G. Letting n be the
order of G and putting p:= ), ;& € M, we get

néy = p—o(p).

Write = > 9€G/H %g g(b) for suitable a, € Z. The displayed equation implies
1 = o(p) (mod nM) for every o € G. This immediately gives the existence of
a € Z such that a, = a (mod n) for all g € G/H, so we write a;, = a+nq,
where g, € Z. Let m := ZG/Hqgg(b) € M. Then nm = p — aZG/Hg(b),
where the last term is invariant by G. Hence né, = n(m — o(m)), whence
£, = m — o(m), as required.
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3. PROOF OF MAIN RESULTS

To prove the Theorem we start by using the following result of Tsen (see
e.g. [0Oj, Cor. 3.12, p. 42] or [P, §19.4]): every homogeneous non-constant
form over Q), of degree d, in d+ 1 variables Xy, ...,Xys admits a non-
trivial zero in Q[f]%t!. (This is relevant also for the above-mentioned Faddeev
sequence.)

Applying this claim to the form N(t,Xi,...,Xs) — X&f(H) we find

a nontrivial zero with X; = x(f) € Q[1]. Suppose xp(t) = 0. Then
N(t,x1(2),...,x4(t)) = 0. But this cannot happen unless x;(f) = 0 for all
i > 0. In fact, wy,...,wy are linearly independent over Q(?); hence they

are linearly independent over Q(¢), since L/Q is regular (we are using [We,
Ch. I, Prop. 7]). Therefore x(f) is nonzero and dividing everything by x4 we
see that f is representable by N over Q(f). Let N* denote the norm from
QL to Q(#). Then there exists ¢ € QL such that

(1) f=N"(p).

REMARK 1. The proofs of Tsen’s result referred to above are quite simple.
Moreover they yield the more precise result that, if the relevant form has
coefficients in Q[¢], of degree < D, then a solution may be found where the
unknowns have degree < max(0,D — d + 1). This bound may be important
in effectivity questions (as in §6).

Let Go := Gal(Q/Q). Then Gq acts on QL/L. We define, for o € G,

(2) Yo = —— € QL.
o(p)

It is immediately shown that f € N*(L*) would follow (against the
assumption), provided ¢, is still of the shape ¢'/o(¢’), but with N*(¢') = 1
(see the end of the proof). Accordingly, our aim will be to prove this
representation for ., assuming the conclusion of the Theorem to be false.

Let k be a number field such that ¢ € kL. Enlarging k we may assume
that it is normal over Q and that all zeros and poles of all the functions o(p)
are defined over k. We let G = Gal(k/Q) and observe that 1), depends only

on the image of ¢ in G. Therefore from now on we let o run through the
finite group G.

Applying o to (1) we see that N*(¢,) = 1. To exploit this fact, let v be
a generator for the Galois group I' := Gal(L/K). By regularity L and k are
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linearly disjoint over Q, so the Galois group of kL over K is isomorphic to
G x I'. By Hilbert’s theorem 90 for the cyclic extension kL/k(t) (with Galois
group isomorphic to I') for each v, there exists L, = L, € (kL)* such that

— LG

L)

Observe that the sets of ¢, and L, depend only on ¢ (not on k). Therefore
we may assume to have chosen k such that all poles and zeros of the L, are
defined over k.

Equation (2) yields 91, = 1. Therefore, by (3) we see that OL, is
invariant by -y, so it lies in k(¢). We denote

3) Yo

(4) Qo,r = OLy = Lyo(L,)L} € k(1)* .

To get the alluded representation of ), it would be sufficient to prove that
L, in (4) could actually be chosen in k(¢)*. This might not be true, but from
Qo+ = 0L, we find

QO’,T = QO’,’T,LLO—(QT,/J,)(QUT,/_L)_I

for all o, 7, u € G. Take the product of these equations over u € G. Letting
n be the order of G and defining R, :=[] ,.; Qo we obtain

(5) Q. =0R,, R, € k()" .

Observe that our choice of k ensures that poles and zeros of all the R, lie
in kU oo. (In cohomological language, O, is a 2-cocycle in k(z)* for the
action of G, and is a coboundary in (kL)*, by definition (4). We wish to
show that it is a coboundary in k(z)*, which might not be true without further
information. Formula (5) shows however that Q" is indeed of that shape. Our
direct calculation reflects the classical fact [CF, Ch. 1V] that the order »n of
the group kills the cohomology groups.)

We now refer to some theory of thin sets, as presented in [Se2]. We may
view L as defined over k. Let, as in the introduction, P; be a point of C
above s € P!. The set of s € k such that Gal(k(P)/k) # T is a thin set in k
[Se2, Prop. 3.3.1]. By [Se2, Prop. 3.2.1], the intersection of this set with Q
is also thin. Define S to be its complement in Q.

Note that the property Gal(k(P;)/k) = I" implies that the fields k and Q(P;)
are linearly disjoint over Q. Therefore Gal(k(P;)/Q) = G x I'. Frequently
in the sequel we shall identify G (resp. I') with G x {1} (resp. {1} x I).
Finally observe that such properties imply that the action of I" on k(C) = kL
commutes with specialization of rational functions in k(C) at P;.
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In view of these facts it will cause no confusion if we continue to use the
notation N* both for N,]:(PA‘) and for NS(P ),
Let §' =SNN;. For s €8 there exists a(s) € Q(Ps) such that
N*(als)) = f(s) .-
Specializing (1) at P, we also obtain N*(¢o(Py)) = f(s), whence
o(P,) = a8)E(s),  where a(s) € Q(Py), &(s) € k(Ps) and N*&@s)=1.

By Hilbert’s Theorem 90 for the cyclic extension k(P;) /k we may write

(6) £(s) =

where p(s) € k(Py) .

Also, since k and Q(P,) are linearly disjoint over Q we have o(a(s)) = a(s)
for all o € G. Therefore specializing (2) at P, we get

£(5)
a(€(s)

(Note that, since N*(£(s)) = 1, this equation is the specialization of the sought
representation for 1), .) Recalling (3) and (6) we get

Lo(Ps) __p(s)/o(p(s)
V(Lo (Py))  Y(p(s)/o(p(s)))

zﬁa(Ps) -

namely

p(s)
a(p(s))

(We tacitly disregard all the finitely many s € S’ with the property that some

of the finitely many involved functions either vanishes or is not defined at
Py ]

(7) L, (Ps) = Lo (), where ﬁ)/(/vLO'(S)) = o ($), Le. MJ(S) €k.

By (4), (5) and (7) we get
OR5(Ps) = Oy (s)" .

On the other hand R, € k(t), so R,(P;) = R,(s) € k. By Hilbert’s Theorem
90 for the extension k/Q we get the existence of [(s) € k such that

s
() B(s)

R, (s) = mﬂa(s)n-

Our next purpose is to show that, if the sought conclusion is not true,
then these numerical equations actually come from an identity (see the
lemma below). This will be done by comparison of functional and numerical
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factorizations. To carry out this program, we start by constructing some relevant
rare sets. First of all, fix a number p, sufficiently large to justify the subsequent
arguments. This number is to depend only on the R,’s, hence only on f.

Consider the set of algebraic numbers r which are zeros or poles of some
R, . We have assumed that such a set is contained in k, and the same is true
of its G-orbit, which we denote by €2. Naturally  is a finite disjoint union
of G-orbits of single elements.

For r € Q and for ¢ € G, define m,(r) as the multiplicity of r in R, .
Consider a G-orbit O C Q and select once and for all »r = ro € O, so
O ={o(r):0 € G}.

Let h € G satisfy h(r) = r. Let P(h) be the set of prime numbers p > pg
unramified in k& and such that the decomposition group of some prime ideal
m of k above p is generated by A. By Chebotarev’s theorem such a set
1s infinite and actually the quantitative formulation [Nar, Thm. 7.11 (resp.
7.117)] asserts that P(h) has a positive Dirichlet (resp. natural) density.

Let p € P(h) and let v = v, be the order function on k with respect to
7. Observe that 7 lies above a prime of the fixed field of 4 which has degree
1 over p. Since h fixes r, such a fixed field contains Q(r). In particular there
exists an integer r; € Z such that v(r — r;) > 2. Observe that for a rational
number x, we have that v(x — r;) =1 1s equivalent to v(x —r) = 1.

We put A(O,h) = Upep(h){x € Q : ord,(x —r) = 1} and we define
R(O,h) = Q\ A(O,h) to be the corresponding rare set. The kernel of the
proof is the following lemma (compare with (8) above).

LEMMA. Suppose that for each O, h there exists s € S’ which does not lie
in the set R(O, h) just defined. Then there exist rational functions B, U, € k(t)

such that

B
RJ:ﬁUg forall 0 € G.

Proof of Lemma. With the above notation, define a function v: O — Z/(n)
by

©)) v(o(r)) ;= —mgy—1(r) (mod n).

We contend that this definition is a good one. To verify this, suppose that
o1(r) = op(r). This is equivalent to o, = o1h where h(r) = r. By assumption
we may pick s € §’ outside R(O, k), whence there exists p € P(h) such that
v(is—r)=1v,(s —r)=1.
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By (8) we have v(R-1(s)) = v(B(s)) — (o7 (B(s))) (mod n) for i=1,2.
Therefore

V(R ,—1(8)) = v(R,-1(5)) = —v(o; ' (B(s)) + v(h oy H(B(s)))  (mod n).

On the other hand, v = v o h~!, since A~! lies in the decomposition group
of 7w and so

(10) 'U(RO_I—I(S)) = ’U(RUZ—;(S)) (mod n) .

Now observe that we can write R,(f) as the product of a nonzero constant
¢, € k times a product [], .o(r —u)"®, so if we suppose that p > po is so
large that all ¢, are coprime to p, we have

V(R (8)) = Y mo(u)v(s — u).
ueQl
Since v(s —r) =1 we see that if py has been chosen large enough, we have
v(s —u) =0 for all u € Q\ {r}. In fact, if p > py is large we may assume
v(s —u) > 0 for all u € Q and if we had v(s — u) > 0 then v(u —r) > 0.
But if u # r, u — r has finitely many prime ideal factors. If p is coprime
with all of them, the assertion follows.
In conclusion we deduce v(R,(s)) = my(r)v(s—r) = m,(r) and comparing
with (10) we get

mal_l(r) = md;l(r) (mod n),
which is precisely what we want, in view of (9).

By equation (5) we have that OR, = R,0(R-)R;! = Q% _ is an n-th

g, T

power in k(7). Recalling that m,(u) is the multiplicity of u in R,, we see
that m, (o~ 'u) is the multiplicity of u in o(R,). Computing the multiplicity
of u in OR, we then get

Mo () = mg () + m, (o~ w) (mod n) .
In this congruence replace o by 77! and 7 by o. We get, for all u € Q,
Mo—1o() = m—1(u) + my(7(u)) (mod n).
Putting u = r and using our (good) definition (9) we may rewrite this as
(11) v(1(r) — (o' 7(r) = my(7(r))  (mod n).

Finally, take any integer representatives (denoted in the same way) for the
classes v(7(r)) modulo n, 7 € G, and do this for all G-orbits O C Q. Define
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Bl(t):H H (t = 7(ro))" )

O 1(rp)€E0

Congruence (11) shows that R,(B;/c(B;))~! has all its zeros and poles in k,
with multiplicity divisible by n, so is of the form ¢,Z", where ¢, € k and
Zs € k(t). Evaluating at some s’ € §' we see from (8) that ¢, = p(6/0(3))
for some [, u, € k. Now it suffices to define B := BB, U, = p,Z, to
obtain the statement of the lemma. [

Under the assumptions of the lemma we get 0R, = OUZ and on the
other hand R, = Qf . = OL] by (4) and (5). Therefore O(U,/Ls)" =
Therefore there exist n-th roots of unity (, . € k such that

(12) Ly /Uy) = Cor -

Specialize this equation at P, for some fixed s € S’ and use equation (7) to
obtain

a(ﬂ/a(s)/Ua(S)) - CO’,T .
Observe that A\, := s (s)/Uy(s) € k. Also, we have

)\U

By Hilbert’s Theorem 90 for the extension kL/L we derive the existence of
¢ € kL such that

Lo =AU, —2
o(¢)
Recall that A\, U, € k(¢) is invariant by I'. Therefore by (3) we have
0, = 219
7 a(g/v(9)
Comparing with (2) we see that 7 := ) ( 5 is invariant by G, hence lies

in L. But N*(n) = N*(¢) = f, against the assumptions of the Theorem.
Therefore for some O,k as above, the element s in the assumptions of the
Lemma cannot exist, proving that S C R(O,h), as desired. L]

Proof of Corollary 1. By [Se2, Thm. 3.5.3] the complement of a thin
set in Q contains an arithmetical progression (see also [Sch2]). Therefore the
first assertion follows.

As to the second one, it suffices to prove the stated estimates for N
replaced both by a thin set and by a rare set. For the first case, see [Se2,
Ch. 3] for much sharper estimates. In the case of a rare set, the estimates
follow in a rather standard way from sieve inequalities. We outline some
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arguments using the large sieve, similarly to [Se3]. We recall from [Se3] the
following statement (see the Théoréme on p.401), entirely analogous to a
corollary of the Davenport-Halberstam Theorem, as discussed e.g. in [Se2,
Ch. X].

Let Q be a subset of Z"" such that for all primes p its reduction £,
modulo p* contains at most 7/pp2” elements. Then, putting Q(x) := QN[0,x]",

we have
#Q(x) < (20" /L),
where L(z) = Z* i<z le d(l—;’i) and the star means that summation is

restricted to square-free positive integers.

We use this result with n = 1 to estimate the number of positive integers
< x 1n a rare set Q. (The case of rationals of bounded height in a rare set
becomes entirely similar by taking n = 2 and associating to a fraction a/b
in lowest terms, the point (a,b) € Z?))

Let P be a set of primes associated to the rare set 2. By definition the
reduction €2, modulo p? contains at most p?> — p + 1 elements for p € P.
Therefore we may take v, = 1 — zip for p € P and v, = 1 otherwise. We

find .
L(z) > Z W ;

d<z
where the summation now runs through square-free integers whose prime

factors are all in P and where 7(d) is the number of divisors of d. For s > 1
we have the identity

1 o]
H(1+2—ps):z <

peEP
Put s =1+ lofofgo;“ 1 + p, say. Then
-
> <y a <</ = — < 1.
W )d d>z pzr

Also, L) = 37 wr = X ase raw = 2 = + O(1). On the other

hand,
log(> " (d)ds) =Y log(1 + —) >3 p

peEP peEP
Since P has positive lower Dirichlet density, for large 7z the left side is
> fylog s—7 Where v is a fixed positive real number. These inequalities imply
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L(z) > (101;1%)7 4+ O(1) and an estimate Q(x) < logﬁx follows, where 0 is

any positive number < 7.

Proof of Corollary 2. It suffices to show that the assumptions for
Corollary 2 imply that Ny does not satisfy the conclusion of the Theorem.

Assume first that v ¢ 2. Let ¢ € Q,(C) be such that N*(¢) = f. We
wish to specialize suitably this equation, but first we may have to modify ¢.
The divisor div(yp) is rational over Q,. Let F be a prime divisor of Q,(?)
which does not appear in f. We may write

F=elG +---+G,)

where the G; are prime divisors of L, rational over Q, and e = ey 1is the
ramification index. Since F' is I'-invariant, in fact the G;’s constitute just the
I-orbit of G;, so we may write G; = ¥"~!(Gy). By taking norms we have
dF = er)  .ro(Gy). Let > m;G; be the part of div(y) made up with the
G;’s. Since N*(p) =f we have ) .m; = 0. Hence we may write ) m;G; as
a sum of terms G; — Gj, i <j. In tumn, G; — G; = Z{;i(Gs — Ggy1) 1s of the
form G — v(G) for some Q,-rational divisor G. These arguments prove that
we may write the divisor of ¢ in the form D; + (D — (D)), where Dy,D
are Q, -rational and D; is made up of zeros or poles of f.

Let now s € Q and let P; be a point of C with #(P;) = 5. We assume
that f(s) is defined and nonzero. In particular D; does not contain any 7(P;)
for 7 € I'. We also assume that Q(P;) has degree d over Q. This holds
outside a thin set 7y of Q. We embed Q(P,) into a finite extension of Q,.

Now, there exists a divisor A, rational over Q,, such that D — A does
not contain any point 7(Py). Let g € Q,(C) be a rational function such that
no 7P appears in A + div(g). Then, the divisor of ¢ := wg/v(g) does not
contain any 7(P;). Observe that N*(1)) = N*(¢) = f. On the other hand we
may evaluate at P; each factor appearing in the norm and we find that f(s)
is a norm from Q,(P;).?)

Assume now that v € X. For r € Q,, we have that N(r,xy,...,xz)
has an image on Q¢ which contains some neighborhood of 1 in Q,, the
neighborhood depending only on v. In fact such an image contains the set
of d-th powers in Q,. Now, let a, be as in (b) and suppose that r € Q,
is very near to a, in the w-adic topology. We have that f(a,) equals some
nonzero value N(a,,bi,...,bs) with b; € Q,. Then N(r,by,...,b,) is very
near to f(r), so we may write

2) This is true even if [Qy(Ps) : Qu] < d. In any case N*(¢(Pys)) is a product of
factors, each a norm from Q. (Ps).

4
[Qu (Ps):Qy]
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N(rabla"’)bd):f(r)lu’

where 1 € Q, is very close to 1; in fact f(r) is near to f(a,), which 18
nonzero. By the previous remarks, p~! is in the image of N(r,xi,...,Xq) on
Q¢, hence the same must be true for f(r), by the basic multiplicative identity
for N. In particular f(r) will be a norm from Q,(P,) to Q..

Let now S consist of the elements of Q which are not poles or zeros
of £, which satisfy [Q(P;) : Q] = d and which are sufficiently close (in the
mentioned sense) to a,, for each v € . We have proved that f(s) is a norm
from Q,(P,), for all s € S and for all places v. By Hasse’s theorem, f(s)
is a norm from Q(P;), so S C N;. On the other hand SN Z contains the
complement of a thin set in an arithmetic progression, whence Ny cannot
satisfy the conclusion of the Theorem (or of Corollary 1), as required.  []

4. AN EXAMPLE FOR THE NON-CYCLIC CASE

We show that assuming that L/K is cyclic is essential in the Theorem (as
in the number-field case, as shown in [CFEF, Ex. 5]).

To describe a counterexample, define L = Q(t, /4t + 3,/4t +7), f(t) = #
We proceed to show that N C Ny. We have to show that for all large integers
n, n* is a norm from L(n) := Q(v/4n +3,/4n+ 7). By [CF, Ex. 5.1 and
5.2, p.360] it is sufficient to show that the local degree [L(n),, : Q,] is 4
for some prime p. Observe that the Jacobi symbol (3:;1%) = (4,:7) = —1.
Hence there exists some prime p dividing 4n 4+ 7 with an odd multiplicity
and such that (i’%'é) = —1. Then p ramifies in L(n) and the residual degree
is 2, proving the claim. Observe that the first conclusion of Corollary 1 does
not hold for Ny.

On the other hand, #* is not a norm from L to K. Otherwise by [CF, Ex.
5.1] we could write ¢ as the product of three norms from the three quadratic
subfields of L. In other words we could write nontrivially

g* (0t = (aj (1) — (4t +3)bT())(a5(t) — (4t + T3 (1)) (1) — (A + 3)(At + TIHA(D))

where g, a;, b; € Q[t]. We may suppose that g; and b; are coprime for each
1, otherwise we can divide out a common factor. Now, putting r =0 we get
a contradiction.
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5. REMARKS ON COROLLARY 2

Corollary 2 does not remain true if we delete (b). In fact, take e.g.
L = Q(t,/2(t>? —5)), f(t) = 5 and let p > 5. Then 2 is a norm from
Q,(V/5) to Q,, so 2(2 —5) is a norm from Q,(z,v/3) to Q,(f), namely we
can write
a,(t)* — 5b,(t)* = 2(* — 5)

for suitable a,, b, € Q,(7). Necessarily b, is nonzero, so 5 is a norm from Q,L
to Q,(¢) for all p > 5. On the other hand simple congruence considerations
show that this is not true for p = 5.

An assumption which may perhaps seem more natural than (a), is that (for
v =p) [ is a norm from (jp\L to (,);,\(z‘), where the hat denotes completion with
respect to an extension of the Gauss norm on Q,(z). This last assumption is
directly related to the solvability of a congruence N(t, x1,...,x;) =f (mod p)
with x; € F,(1). When such a congruence is solvable, Hensel’s principle may
lead to a solution with x; € (5;(7), but not perhaps with x; € Q,(?).

However a posteriori the solvability of the above congruence is equivalent
with any of the mentioned assumptions, for almost all p. We sketch a proofs
of this claim.

Take first p to be a prime not dividing d and such that the cover L/K
has good reduction at p. By this we mean that the Gauss norm on Q,(?)
admits only one extension to Q,L. Denote by L(p) the residue field of L
with respect to this extended valuation. Then L(p) is cyclic of degree d over
F,(2). Also, it goes back to Deuring that the genus of L(p) does not exceed
the genus of L. We remark that it is well known that these properties are
satisfied by all but finitely many p. For large p we may also suppose that
the reductions of the w;’s are linearly independent over F,(¢). In that case to
say that f is a norm from L(p) is equivalent to solving (13) with x; € F,[z].

We now define certain relevant projective varieties. Consider the equation
d
(13) N(t,xy1,...,xq3) = xof ,

where the x;’s are polynomials of degree < B. This is equivalent to a certain
system of homogeneous equations over Q (each of degree d) in the coefficients
of the x;’s. Such a system defines a variety in PU+tDETD=1 ghich we denote
by Vg. To find a point of Vp over a field £ means to find a nontrivial solution
of (13) with x; € k[t] of degree < B. In particular we may then represent f
as a norm from kL.
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We pause to note a fact not without interest in itself. Let k be any field
and let L be a cyclic, k-regular separable extension of K(r) with Galois group
T of order d. Let g be the genus of L. By deg; we shall mean the degree
(of a function or divisor) referred to L, while deg will be referred to k(7).
We have

PROPOSITION. If f is a norm from L to K(1), then it is the norm of a
function ¥ € L with degp v < degf +g+d—1.

To prove this assertion, let N = Nl%(r) be the mentioned norm and write
f=N(o). Let F be a prime divisor of k(r) appearing in f with multiplicity
m = mp. We may write, as in the proof of Corollary 2,

F=eG +- --+G,)).

where the G; are prime divisors of L, rational over k, e = er is the
ramification index and G; = ~~Y(G;). We have deg  F = ddegF =
erdeg; G,. By taking norms we have dF = er) . o(Gy). Let Y mG;
be the part of div(¢) made up with the G;’s. Since N(o) = f we have
d(>",m;) = erm. Hence |) m;| < |erm/d| and we may write > miG; =
m' Gy + > miG;, where |m'| < |erm/d| and > m! = 0. Also, > m;G; can be
written as a sum of terms G;—G;, i <j. In turn, G;—G; = > (G — Gyy1)
is of the form G — ~(G) for some rational divisor G. These arguments prove
that we may write the divisor of o in the form Dy —D_ + (D —~(D)), where
D..D_.D are k-rational, D .D_ are positive and

deg; D+ < Z (imF)% deg; G; < Z mrpdeg F = degf .

+mp>0 +mp>0

Take now the divisor Z of zeros of the function f, say. This is positive of L-

degree d, rational over k and invariant by I'. Let /1 be the least integer such

that deg D + hd > g. Then g < deg(D + hZ) < g+ d — 1. By Riemann-Roch

there exists a function £ € L. such that its divisor is of the form E—D — hZ,

where E is positive. Since D, Z and £ are rational over k, E is also rational

over k. Also, degy E=degg D+hd < g+d—1.Put v = O%. Then
diviw) =Dy —D_+D —~D)+E—-D —hZ —~(E)+~(D)+ hZ

=D, —D_+E—~(E).

Therefore the divisor of zeros of w« has degree (in L) bounded by
degi (E+Dy) < degf+g-+d—1. Also N(w) = N(®) = f. This proves the claim.
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COROLLARY. If f is a norm from kL to k(t), then Vg has a k-point for
some B bounded only in terms of degf and L (but not on k).

Here k is any field of characteristic zero and kL := k(f) ®g«) L. To prove
the assertion, let ¢ be as in the Proposition (with L. = kL, k = k) and write
Y = Z?zl yiw; with y; € k(). Conjugating the equation over k(¢f) we obtain
a d x d invertible linear system in the y;’s, namely o(y)) = Zle yio(w;)
for o € I'. We may solve this system for the y; and express them as linear
combinations of the ¢(1) with coefficients depending only on the basis {w;}.
On the other hand the (kL)-degree of o(v) is bounded as in the Proposition.
Since the degree is subadditive and degy; = (deg,, y;)/d, we see that degy; is
bounded depending only on degf and L. Therefore we may write y; = x;/xg,
where the x;’s are polynomials in k[t] whose degree is likewise bounded, say
by B = B(degf,L), and the claim follows.

Applying then the Proposition with L = L(p), k = F, and arguing as in
the above Corollary we may assume that the degrees of the x;’s are bounded
in terms of degf and L only. In turn, this is like finding an F,-point on the
reduction of Vg, provided B = B(degf,L) is large enough.

Now we observe the following fact: Given a projective variety V/Q, for
almost all p the existence of a point over F, in the reduction of V mod p
is equivalent to the existence of a point in V(Q,).

(We tacitly assume to choose a set of defining equations for V and to define
the reduction of V by reducing modulo p the equations, for large p.) This
claim is most probably well known, but we have no reference. We just sketch
a proof of the nontrivial part by induction on dim V. If V is a finite set of
points and some such point P reduces in ¥, modulo some prime ideal above
p, then Q(P) may be embedded in Q, for large p. Suppose m = dimV > 1.
We may assume that V is Q-irreducible and express it as a union of absolutely
irreducible varieties W, defined over a number field £ and conjugate over Q.
Suppose V has a point over F,, where p is large. Then there exist some W,
and a prime 7 of k, lying above p, such that the reduction of W, modulo =
has a point over F,. If such a reduction is defined over F, then it contains
points over K, in any prescribed Zariski open subset; in fact the reduction is
absolutely irreducible for large p and we may apply the Lang-Weil theorem
[Se2, Thm. 3.6.1, p.30]. In this case Hensel’s principle gives a point of W,
over Q,. If the reduction is not defined over F,, then the mentioned point lies
in the intersection with some other conjugate over ¥, , 1.e. in the reduction of
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some intersection W, MW, of distinct conjugates. This has smaller dimension
and induction applies.

In conclusion, for large p and B as above we have that the following are
equivalent: (i) f is norm from Q,L; (ii) Vg has a Q,-point; (iii) Vp has
an ¥,-point; (iv) f is a norm from L(p).

We finally observe that the varieties Vp so defined satisfy the usual local-
global principle, in view of the above Corollary 2 (with ¥ = @) and in view
of the Corollary to the Proposition (applied with k = Q and k = Q,).

REMARK 2. A proof of the equivalence of (i) and (iv) may also be
given by arguments partially analogous to the proof of the Theorem, without
invoking the Proposition or the varieties Vg. We start by finding a solution over
a finite normal extension k& of Q. We embed £ in a finite extension k, of Q,
and we consider the functions ©,, L,, Q,, for 0,7 € G' := Gal(k,/Q));
for large p we may reduce everything modulo v, denoting it with a tilde,
finding a similar situation over the residue field F, of k,. Also, we may
assume that Gal(F,/F,) = G'. By assumption, there exists £ € L(p) with
norm f Then ¢ and ¢ have the same norm, whence @ = §(A/7A) for some
A € F,L(p). This easﬂy leads to Lg = (A/ O'A)B (1), where B e F,(t). In
turn we find that QUT = O(B,). If p 1s so large that no two zeros or poles
of Qs may collapse after reduction, then is is easily seen that we may find
rational functions B, € k,(f) such that O, ./0(B,) € k,, reducing to the case
when the O, , are constant. Actually, by using equations (5), we reduce to
the case when they are roots of unity in k,, in which case the proof is easily
completed.

6. EFFECTIVENESS

The problem is the following. How can we decide whether a given f admits
a nontrivial representation in the form (13), with x; € Q[#] ? An answer can be
given with the methods at the end of the last section. In fact, we have proved
that if some representation exists, then a certain projective variety V (whose
equations can be found) has a Q-point and conversely. We have observed that
V satisfies the local-global principle. Known methods allow one to decide

whether V' has points over all Q, and this gives an answer to the original
question.
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Another, more direct, procedure is furnished by the method of proof of the
Theorem. This has the advantage of yielding a representation when it exists.
We start by finding a solution over Q. This can be done by e.g. Remark 1.
We may then construct the number field k and the functions %),, as in (2)
above. Now we can construct, as in the proof, the rational functions R,.
Reversing the arguments in the proof of the Theorem, we see that the main
problem may be solved if and only if

(1) the conclusion of the Lemma holds for the R, and

(11) if (1) 1s in fact true, the function (,, given by (12) is of the form
0&, for some &: G — k*.

Question (i), as in the proof of the Lemma, amounts to the fact that
definition (9) is a good one and that (11) holds. Plainly this can be decided
with a finite amount of computation.

As to the second question, it can be decided e.g. by the usual local-global
principle for 2-cocycles over number fields or by the following method, which
allows even to find a suitable function &, when it exists.

Suppose that such a function ¢ exists. First, since the (,, are roots of
unity, the divisor D, of &, satisfies 9(D,) = 0. The group of divisors of
k is however a permutation module for the action of G = Gal(k/Q), so, as
we have seen in §2, we may write D, = D — o(D) for some divisor D.
Since the class number of k is finite, we may write D = (y) + R, where
(y) is the principal divisor of y € k* and R is in a finite set which can be
computed. Replacing &, with £,0(y)/y we may thus assume that the divisor
of &, belongs to a finite set. Hence we may write &, = z,u,, where the
Zo € k* lie in a finite set and u, € k™ are units. In particular we may suppose
the z, to be fixed. Now, the unit group of k is of the form Z/(m) x Z*, for
some integers m,s (and we may effectively find corresponding generators).
The action of G corresponds to a certain linear action on this product. Our
problem is thus easily reduced to a finite system of linear equations and
congruences modulo m, to be solved in integers. It is an easy and well-known
matter how to decide about the existence of integral solutions. This completes
the argument.
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