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ON GROUPS ACTING ON NONPOSITIVELY CURVED
CUBICAL COMPLEXES

by Werner BALLMANN ') and Jacek SWIATKOWSKI?)

ABSTRACT. We study groups acting on simply connected cubical complexes of
nonpositive curvature. Our main objectives are related actions on trees, the existence
of free subgroups and the existence of homomorphisms onto free abelian groups.

INTRODUCTION

We study groups acting on simply connected cubical complexes of nonpos-
itive curvature. Examples of such groups and spaces arise naturally from many
constructions. Among them are graph products of groups and other groups
acting on right-angled buildings, fundamental groups of hyperbolizations of
polyhedra, of toric manifolds and of blow-ups of arrangements of hyperplanes,
and many others (see [Da], [DJ1], [DJ2], [DJS] and Section 2 below). Roughly
speaking, a cubical complex 1s a cell complex whose cells are cubes. As a
definition of nonpositive curvature we use the comparison triangle condition
CAT(0) with respect to the natural cubical metric of a cubical complex (see
Section 1 below for more details).

It turns out that groups acting on nonpositively curved cubical complexes
share many properties with groups acting on trees and with infinite Coxeter
groups. For example, if I' is a group satisfying Property (T), then any
automorphic action of I" on a tree, a Coxeter complex, a Euclidean space or
a hyperbolic space has a fixed point, see [HV], Chapter 6. The same result
holds for actions of I' on cubical complexes, a result recently proved by
Niblo and Reeves, see [NR]. This result and our related results in [BS] are
the source of our interest in cubical complexes.
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For the results in this paper we require stronger assumptions on cubical
complexes, related to finer results in [BS]. These additional requirements are
still natural and are satisfied by many examples. First of all, we only consider
chamber complexes. Our second and main requirement is that the complex
X 1s foldable, that is, it admits a combinatorial map onto an n-cube, where
n = dim X. Since a folding of an n-dimensional cubical chamber complex X is
unique up to an automorphism of the n-cube, any group I' of automorphisms
of X contains a finite index subgroup I" preserving a given (and hence any)
folding of X. We refer the reader to Section 1 for definitions and basic facts.

We recall that a Hadamard space is a simply connected complete space
of nonpositive curvature. The theory of Hadamard spaces is fundamental
for the arguments in this paper. Isometries of Hadamard spaces fall into
three classes according to the behaviour of their corresponding displacement
function. If this function assumes its infimum, then the corresponding 1sometry
1s called semisimple, otherwise parabolic. The semisimple isometries fall into
two subclasses, the elliptic ones which fix a point and the axial ones which
translate a geodesic of the space.

Associated to a Hadamard space X is the ideal boundary X(co) at infinity
and the closure X = X U X(oo). These objects generalize the corresponding
objects for trees and the hyperbolic plane in an appropriate way. For details
we refer to [Ba].

As we mentioned above, a group does not satisfy Property (T) if it
acts without fixed points on a tree. In this sense, the result below gives
a strengthening of the result of Niblo and Reeves.

THEOREM 1. Let X be a simply connected foldable cubical chamber com-
plex of nonpositive curvature, and let Auty(X) be the group of automorphisms
of X preserving the foldings. Then we have :

(1) there are simplicial trees AT, ...,A,, n=dimX, actions of Aut;(X) on
AT, ..., A, and a biLipschitz embedding r. X — A7 X --- X Ay such that
r is equivariant with respect to the diagonal action of Auts(X) on the
product of the trees A} ;

(2) an automorphism ¢ € Auty(X) is elliptic if and only if the action of ¢
on each of the trees A is elliptic and axial if and only if the action of
¢ on at least one of the trees A} is axial;

(3) if T C Aute(X) is a subgroup that does not have a fixed point in X, then
I' acts without fixed point on at least one of the trees A;.
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The next result is a version of the Tits Alternative on the existence of free
subgroups. Our result extends and our proof relies on a corresponding result
for the action of a group I" on a tree T : if T" does not fix a point or an end
or a pair of ends of 7, then I' contains a free nonabelian subgroup acting
freely on T, see [PV].

THEOREM 2. Let X be an n-dimensional simply connected foldable cubical
chamber complex of nonpositive curvature and T C Aut(X) a subgroup.
Suppose that T does not contain a free nonabelian subgroup acting freely
on X. Then up to passing to a subgroup of finite index, there is a surjective
homomorphism h: T — ZF for some k € {0,....n} such that the kernel A of

h consists precisely of the elliptic elements of T and, furthermore, precisely
one of the following three possibilities occurs:

(1) T fixes a point in X (then k= 0).

(2) k > 1 and there is a T -invariant convex subset E C X isometric to
k-dimensional Euclidean space such that A fixes E pointwise and such
that T'/A acts on E as a cocompact lattice of translations. In particular,
I" fixes each point of E(co) C X(00).

(3) T fixes a point of X(co), but A does not fix a point in X. There is a
sequence (x,,) in X with strictly increasing stabilizers, Stab, ; Stab,,, .,
with | JStab, = A. Up to passing to a subsequence, any such sequence

converges to a fixed point of I' in X(00).

If the action of T' is free or, more generally, if there is a universal upper
bound on the order of the stabilizers of the action, then possibility (3) in
Theorem 2 cannot occur.

Related to Property (T) there is the question of the existence of an
epimorphism onto the group Z of integers for a finite index subgroup of
a group. Recently, C. Gonciulea gave a positive answer to this question in the
case of infinite Coxeter groups [Go]. We give a positive answer for groups
acting on a class of cubical manifolds.

THEOREM 3. Let X be a simply connected cubical manifold of nonpositive
curvature and assume that the number of chambers adjacent to each face of
codimension 2 in X is divisible by 4. Let T be a group acting on X
cocompactly by automorphisms. Then a finite index subgroup of T admits a
surjective homomorphism onto 1", where n = dimX.
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The paper is organized as follows. In Section 1 we recall basic definitions
and facts related to cubical complexes, prove some criteria for foldability
and discuss nonpositive curvature. In Section 2 we recall some constructions
and examples of foldable cubical complexes. In Section 3, we introduce
hyperplanes in cubical complexes as in [INR]. Foldability then leads to systems
of disjoint hyperplanes and their “dual trees” which will accomplish the proof
of Theorem 1. In Section 4 we investigate the induced actions on the dual
trees and obtain the proof of Theorem 2. In Section 5 we develop the idea
of parallel transport in cubical manifolds and use it to prove Theorem 3.

We are grateful to M. Bridson, T. Januszkiewicz, S. Mozes and the referee
for helpful discussions and hints.

1. CUBICAL COMPLEXES

In this section we briefly recall basic notions and facts related to cubical
complexes.

CUBICAL COMPLEXES AND CUBICAL METRIC

A cell P is the convex hull of a finite set of points in a real vector space.
Faces of P are then well defined, and they are also cells (see e.g. [Br]). The
set P of faces of P is partially ordered by inclusion and called the poset of P.
Two cells are combinatorially equivalent if their posets are isomorphic. For
example, every convex quadrilateral polygon is combinatorially equivalent to
the unit square. An isomorphism of posets induces a bijection between sets of
barycenters of faces and thus determines a piecewise linear homeomorphism
between two cells. We call such a homeomorphism a realization of a
combinatorial equivalence.

A cell complex is a collection X of cells which are glued by realizations
of combinatorial equivalences along faces. We also assume that different faces
of the same cell are not identified and that the intersection of different cells is
either empty or consists of one cell. These latter assumptions are not essential,
but they simplify the exposition considerably. However, we do not require that
X is locally finite, so that, if not explicitely stated otherwise, a vertex in X
may belong to infinitely many distinct cells.

We say that a cell complex X is simplicial if the cells of X are simplices.
Because of our assumptions on the glueing of faces, this coincides with
the standard terminology. We say that X 1s cubical if the cells of X are
combinatorially equivalent to cubes.
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Let X be a cubical complex. Any combinatorial equivalence of a Euclidean
unit cube is an isometry, hence any cell P in X is endowed with a canonical
metric dp which makes it isometric to the Euclidean unit cube. This allows
to measure the lengths of finite polygonal paths in X. Let d be the associated
length pseudometric on X. Then d is actually a metric and turns X into a
complete geodesic space, see [B1]. We call d the cubical metric.

RESIDUES AND LINKS

For a cell complex X and a cell P in X, the residue of P, denoted res P,
consists of all cells of X containing P. The residue of a cell is a closed
subcomplex of X.

Let X be a cell complex. If P and Q are cells in X with QO € resP,
then the poset consisting of all faces R of Q with P # R D P is a poset
of a cell Op, well defined up to combinatorial equivalence and of dimension
dimQp = dimQ — dim P. We define the link Xp of a cell complex X at a
cell P as the collection of the cells QOp, one for each cell Q in resP, with
the natural identifications of faces induced from X.

We will need residues and links only in the case when X is simplicial
or cubical. In both cases, the links are simplicial. In the simplicial case, the
residue of a simplex P of X is naturally homeomorphic to the simplicial
join of P and Xp, in the cubical case to the cubical cone over Xp times P.
(See the subsection on right angled Coxeter complexes in Section 2 for the
definition of the cubical cone.)

GALLERIES AND CHAMBER COMPLEXES

An n-dimensional cell complex X is called dimensionally homogeneous if
each cell of X is contained in an n-dimensional cell. If X is dimensionally
homogeneous, then the top-dimensional cells of X will be called chambers,
the cells of codimension 1 panels.

A special case occurs when X is homeomorphic to a manifold. In this
case we say that X 1s a cellular manifold, speaking also about simplicial or
cubical manifolds if all the chambers are simplices or cubes respectively.

Let X be a dimensionally homogeneous cell complex. A gallery in X is
a sequence of chambers where any two consecutive chambers have a panel
in common. We say that X is gallery connected if any two chambers of X
can be connected by a gallery. If X is gallery connected, then we say that

X 1s a chamber complex. Tits buildings and connected cellular manifolds are
chamber complexes.
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We say that X 1s locally gallery connected if the link of each cell of X
of codimension greater than 1 is gallery connected. If X is connected and
locally gallery connected, then X is gallery connected and hence a chamber
complex.

FOLDINGS

A folding of an n-dimensional simplicial (respectively cubical) complex X
1S a combinatorial map of X onto an n-simplex (respectively n-cube) which
is injective on each cell of X. A folded simplicial (respectively folded cubical)
complex 1s a simplicial (respectively cubical) complex together with a folding.

A simplicial (respectively cubical) complex X is foldable if it admits a
folding, locally foldable if the link of each cell of X is foldable. The following
lemma gives a criterion for foldability of a cubical complex in terms of local
properties.

LEMMA 1.1. Let X be a simply connected cubical chamber complex of
dimension n. If X is locally gallery connected and locally foldable, then X is
foldable and a folding of X is unique up to an automorphism of the n-cube.

Proof. We observe that foldability (respectively gallery connectedness)
holds for the residue of a cell P of X if and only if it holds for the link
Xp. Therefore the assumptions of the lemma imply that all residues in X are |
foldable and gallery connected.

A curve c: [0,1] — X 1s called generic if it crosses the codimension one |
skeleton of X at finitely many points. We will call such points singular. Since
X is dimensionally homogeneous, generic curves are dense in the space of all
curves in X.

Let ¢ be a generic curve connecting interior points p and g of chambers
P and Q of X. Define an isomorphism f.: Q — P as follows. If ¢ has no
singular point we set f. = idp. If ¢ has one singular point, let R be a cell
of X containing this singular point in its interior. Then the whole curve c¢ is
contained in the residue of R. Since resR 1is foldable, there exists a folding
map f: resR — P which extends 1dp ; since resR is gallery connected, f is
unique. We set f, := f|p. Finally, if ¢ has more than one singular point, we cut
¢ into a sequence ¢; of curves, each of which has exactly one singular point
in its interior, and define f. to be the composition of the isomorphisms f,,.

We show now that f. = id for each closed generic curve at p. Let ¢ be -
such a curve. Since X is simply connected, ¢ can be contracted to p. Such a
contraction can be chosen to be generic, that is, it consists of generic curves
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only and singular points appear or disappear only at a finite number of times
during the contraction. At each such time, c¢ can be cut into finitely many
pieces such that each piece is contained in the residue of a cell and such
that the appearance or disappearance of singular points occurs in (some of)
the pieces. Since residues are gallery connected and foldable, we conclude
that f. remains unchanged during the contraction. Now f, = id for the point
curve p, hence f. = id.

Fix a chamber P in X and an interior point p of P. For each other
chamber O of X choose an interior point ¢ € Q and a generic curve ¢
connecting p with ¢. Define a map F: X — P by F lo = f.. The above
considerations show that F is well defined, hence F is a folding of X. This
proves the first assertion of the lemma.

The remaining assertion that the folding is unique up to an automorphism
of the n-cube follows immediately from gallery connectedness of X. L]

LEMMA 1.2. Let X be a simply connected cubical chamber complex of
dimension n. Suppose that

(1) the links at cells of X of codimension > 2 are simply connected,

(2) the links at the cells of X of codimension = 2 are connected bipartite
graphs.

Then X is foldable, and a folding of X is unique up to an automorphism of

the n-cube.

Proof. For the purpose of this proof a curve in X is called generic if it
misses the skeleton of codimension 2 and crosses the cells of codimension 1
transversally (note that this notion here is slightly different from the one in the
proof of the previous lemma). It is clear that any two points in the interior of
some chambers of X can be connected by a generic curve. If such a curve is
closed, it can be contracted to a point by a contraction that misses the skeleton
of codimension 3 and crosses the higher dimensional skeleta transversally.

Now we repeat the arguments of the proof of Lemma 1.1 taking only
the residues of cells of codimension 2 into account. These residues consist
of chambers arranged according to the corresponding links. Because the links
are bipartite graphs, the residues are foldable. [

COROLLARY 1.3. Let X be a simply connected cubical manifold of
dimension n with the property that the number of chambers adjacent to
each face of codimension 2 in X is even. Then X is foldable, and a folding
of X is unique up to an automorphism of the n-cube. L]

:
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NONPOSITIVE CURVATURE

We will need some elementary facts from the theory of spaces with upper
curvature bounds. The main reference is [Ba].

Let (X,d) be a metric space. A curve in X 1is called a geodesic if it has
constant speed and realizes the distance locally. We say that X is geodesic if
any two points of X can be connected by a minimal geodesic. From now on
we assume that X is a complete geodesic space.

Let x € R, and let M2 be the model surface of constant Gauss curvature .
Denote by D(x) the diameter of MZ. We say that our geodesic space X is
a CAT(k)-space if any geodesic triangle in X with minimal sides and of
perimeter < D(k) is not thicker than its comparison triangle in M2. We say
that X has curvature < x if any point of X has a neighborhood that is
CAT(x) with respect to the induced metric.

For nonpositively curved spaces, that is, spaces with upper curvature
bound 0, there is the following extension of the Hadamard-Cartan Theorem.

THEOREM 1.4 (Gromov [Gr], Alexander-Bishop [AB]). Let X be a simply
connected, complete geodesic space of nonpositive curvature. Then geodesic
triangles in X are not thicker than their corresponding comparison triangles
in the Euclidean plane. In particular,

(1) for any two points x,y € X, there is a unique geodesic oy, : [0,1] — X

from x to y and o, depends continuously on x and y;

(2) locally convex subsets of X are globally convex;

(3) X is contractible.

We say that a cubical complex is nonpositively curved if it is nonpositively
curved with respect to the cubical metric. The lemma below presents a
necessary and sufficient condition for a cubical complex to be nonpositively
curved in terms of its combinatorics.

A simplicial complex X is a flag complex if each set of vertices of X, in
which any two vertices are connected by an edge, spans a simplex of X.

LEMMA 1.5 (Gromov [Gr]). A cubical complex is nonpositively curved if
and only if the link X, at each vertex v of X is a flag complex.

REMARK 1.6. If X is a simply connected nonpositively curved cubical
complex, then the restriction of the cubical metric to any of its cells coincides
with the standard Euclidean metric on the cell.
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2. EXAMPLES

In this section we show how examples of cubical chamber complexes of
nonpositive curvature arise naturally in many constructions. We indicate the
features of the constructions which lead to foldability of the universal covers
of the resulting complexes.

BARYCENTRIC SUBDIVISION

Recall that if P is a cell then the barycentric subdivision P’ of P is
the following simplicial complex : k-simplices of P’ correspond to sequences
Fo C Fy C -+ C Fy of faces of P, where F;_y # F; fori=1..... k., and the
relation of being a face corresponds to being a subsequence. One can realize
the subdivision P’ geometrically inside P as follows: For each face F' of P
choose a point pg in the interior of F (if F is a vertex then pr = F). Then
the simplex corresponding to a sequence Fy C F; C --- C F; 1is identified
with the convex hull of the set {pr,.pr,..... Pr.} in P.

For a cell complex X the barycentric subdivision X’ of X is the simplicial
complex whose k-simplices correspond to sequences Co C C; C --- C Cy of
cells of X, with C;_y #C; for i=1..... k. This corresponds to subdividing
barycentrically all the cells of X in a consistent way.

We recall some well known facts related to barycentric subdivision.

LEMMA 2.1.  The barycentric subdivision X' of a cell complex X is a
foldable flag complex.

Proof.  We note that a folding of X" onto the simplex spanned by the
set {0.1..... dimX} is well defined by assigning to each vertex in X’ the

dimension of the corresponding cell in X.

If A is a set of vertices of X" pairwise connected by edges, then the set
of corresponding cells of X can be ordered by inclusion. But this means that

A spans the simplex in X" corresponding to this ordered sequence. Thus X’
is a flag complex. [

LEMMA 2.2, Let v be a vertex of a cell complex X. Then the complexes
(X")w and (X,)' are isomorphic.

Proof.  Simplices in both (X’), and (X,) correspond to sequences
CoCCyC - CC of cells of X containing v and distinct from v. L]
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LEMMA 2.3. Let v be a vertex of a cell P. Then the complex (P'), is
isomorphic to the complex [(OP) xIl,x1, where I is a 1-cell with a vertex 1,
and X denotes the product of cell complexes.

Proof. Clearly, both complexes are isomorphic to the simplicial cone over
the complex (0P),. [

HYPERBOLIZATIONS

We briefly describe two procedures which turn cell complexes into
nonpositively curved cubical complexes (for more details, see [DJ1], [CD]).
We also discuss when the resulting complexes are foldable chamber complexes.

THE PRODUCT WITH INTERVAL PROCEDURE. Define a functor s; from the
category of cell complexes to the category of cubical complexes, inductively
with respect to the dimension of initial cell complexes. Let K be a cell
complex. If dimK < 1, set h(K) = K. Now consider a cell complex K
with dimK = i+ 1. Assuming inductively that h; has been already defined
for all cell complexes of dimension < i, define a hyperbolized complex
hi(K) as follows. Glue “hyperbolized (i -+ 1)-cell” h(C) := h(9C) x [—1,1]
(corresponding to (i + 1)-cells C of K) to the complex hy(K?¥) x {—1,1}
according to the identifications of the two copies of the sets 7;(0C) x {—1,1},
one in A (C) and second in hj(K“”) x {—1,1}, by the identity maps. Note
that /;(0C) is identified with a subset of h;(K™”) by the (inductively verified)
functoriality of h; for cell complexes of dimension <.

THE MOBIUS BAND PROCEDURE. Define a functor h; on the category
of cubical complexes, inductively with respect to the dimension of initial
complexes. Let K be a cubical complex. If dimK < 1, set h(K) = K. Now
consider a cubical complex K with dimK = i+ 1. Assuming inductively
that s, has been already defined for all cubical complexes of dimension
< i, define a hyperbolized complex hy(K) as follows. For each (i + 1)-
cell C = [—1,11"" in K put h(C) = (h(OC) x [-1,1])/7. Here 7
is the involution 7(x,1) = (a(x),—t) on hy(0C) x [—1,1], where a is
the combinatorial automorphism of /7,(0C) induced from the antipodal
automorphism of JC by the (inductively verified) functoriality of h, for
cubical complexes of dimension < i. Identify /hy(0C) with the image of .
hy(OC) x 1 in hy(C), and then glue each hy(C) to hy(KW) along hy(0C)
using the identity map.
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Note that for both procedures above each vertex in the hyperbolized
complex h;(K) corresponds to a unique vertex in the initial complex K.
The next lemma shows how the links at such vertices in the corresponding
complexes are related.

LEMMA 2.4. Let v be a vertex of hi(K) and vy the corresponding vertex
of K. Then the links (hj(K)), and (K")y, are isomorphic.

Proof. We proceed by induction with respect to dimension of K. Clearly,
if dimK =1 then vo =v, hi(K) =K and K, = (K'),. Let dimK =n > 2.
Denote by T the vertex in 7;(K”~Y) corresponding to v. Then by the inductive
hypothesis, the links [2; (K"~ D)]z and [(K"~ V)], are isomorphic. On the
other hand, it follows from the descriptions of the procedures /; that for each
hyperbolized n-cell h;(C) containing v we have [#;(C)], = [1;(OC) X lzx1 -
The lemma follows then from Lemma 2.3. [

PROPOSITION 2.5. Let K be a cell (respectively cubical) chamber complex
which is locally gallery connected. Then the hyperbolized complex hi(K)
(respectively hy(K)) is a nonpositively curved cubical chamber complex.
Moreover, its universal cover, with the induced cubical structure, is foldable.

Proof. It is clear from the construction that 7;(K) is a cubical chamber
complex. By Lemmas 2.2 and 2.4, we have [i;(K)], = (K,,) . It follows
from Lemma 2.1 that the links of 7;(K), at all vertices, are foldable flag
complexes. Now Gromov’s Lemma 1.5 implies that the complexes h;(K) are
nonpositively curved. It is immediate from Lemma 2.4 that h;(K) is locally

gallery connected if K 1s. The last part of Proposition 2.5 follows then from
Lemma 1.1. [

Note that if X is the universal cover of a hyperbolized complex #;(K) as
in the above Proposition, then the fundamental group mi(hj(K)) acts on X
freely by automorphisms. The complex X and the group I' are then examples
of a complex and a group as in Theorems 1 and 2 of the introduction.

The universal cover of 1;(K) is hyperbolic in many cases, but not always,
see [Gr], [CD].

ZONOTOPAL COMPLEXES

In this subsection we briefly describe an extended class of cell complexes

to which the Mobius band hyperbolization procedure can be applied, see [DJS]
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for more details. (Recall that the product with interval procedure applies to
all cell complexes.)

An arrangement in a real vector space V is a finite collection H of linear
subspaces of V with codimension one. Elements of H are called hyperplanes.
An arrangement H is essential if the intersection [ of all hyperplanes in
H is {0}.

Let H be an essential arrangement. For each hyperplane H € H consider
a linear functional fy € V* with kerfy = H. Denote by Z;; the convex
polytope in V* which is the convex hull of the set

{ZEH-fH|€H:i1}.

HeH

It turns out that the combinatorial structure of Zp does not depend on
the choice of the functionals fy. In fact the polytope Zj is dual to the
arrangement 7 in the sense that its boundary is dual to the spherical cell
complex determined by the intersection of  with the unit sphere in V.

Polytopes of the form Z;; as above are called zonotopes (see [B-Z]). A
cell complex is zonotopal if all of its cells are zonotopes. The boundary of a
zonotope is an example of a zonotopal complex, since each face of a zonotope
1S a zonotope.

The important feature of a zonotope Z = Z; 1s that the central symmetry
f +— —f of V* induces a combinatorial antipodal automorphism of Z. This
allows to apply the Mobius band hyperbolization A, to zonotopal complexes.
By the same arguments as in the previous subsection we get the following
result. ‘

PROPOSITION 2.6. Let K be a zonotopal chamber complex which is locally
gallery connected. Then the hyperbolized complex h,(K) is a nonpositively
curved cubical chamber complex. Moreover, the universal cover of hy(K),
with the induced cubical structure, is foldable.

BLOW-UPS OF ARRANGEMENTS

An arrangement H in a real vector space V determines an arrangement
P(H) of projective hyperplanes in the projective space P(V). If H is essential
then P(H) divides the space P(V) into convex spherical polytopes, so that it
becomes a chamber complex. It is proved in [DJS] that the cell structure dual
to the above converts the space P(V) into a zonotopal chamber complex.

It is possible to interpret the hyperbolization procedure h;, applied to a
zonotopal complex as above, as a sort of blow-up with respect to the divisor
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in P(V) consisting of all subspaces of codimension greater than one which
are intersections of hyperplanes in P(H), see [DJS]. By Proposition 2.6, this
blow-up produces a nonpositively curved cubical chamber complex whose
universal cover is foldable.

In [DJS], the procedure described above is called the maximal blow-up. In
the same paper some refinements of this procedure, called partial blow-ups,
are discussed. In many natural cases these partial blow-ups result in cubical
chamber complexes of nonpositive curvature.

SIMPLE POLYTOPES

A convex polytope P is simple if the link of P at any vertex is a simplex.
Equivalently, P is simple if the boundary complex OP of the dual polytope
Pisa simplicial complex.

Any n-dimensional simple polytope P can be subdivided canonically into
a cubical complex Py in such a way that vertices of Py correspond to
cells of P and each cubical n-cell of Py i1s spanned by the set of vertices
corresponding to cells of P containing a fixed vertex of P. See section 1.2
of [DJS] for a more detailed description of this subdivision and for the proof
of the following lemma.

LEMMA 2.7. Let v be the vertex of Py corresponding to P. Then the
link (Pg), is isomorphic to OP.

COROLLARY 2.8. The following conditions are equivalent:
(1) Pg is foldable,
(2) OP is foldable;
(3) for each codimension 2 simplex C in OP the link (813)@ is even-gonal;

(4) each 2-dimensional face F of P is even-gonal.

Proof.  Conditions (1) and (2) are equivalent by Lemma 2.7. The equiva-
lence of (2) and (3) follows from Lemma 1.2. And (3) and (4) are just the
dual expressions of the same condition. [

REMARK 2.9. A polytope P satisfies Condition (4) of Corollary 2.8 if and
only if P is a zonotope, see Proposition 2.2.14, p. 64, in [B-Z]. Therefore,

the cubical subdivision Py of a simple polytope P is foldable if and only if
P is a (simple) zonotope.
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Any face F of a simple polytope P is also simple and the cubical
subdivision Pp restricted to F agrees with the subdivision Fy. Let X be a
simple cell complex, i.e. a complex all cells of which are simple. Then the
canonical cubical subdivisions of the cells of X are consistent and determine
a subdivision Xy of X.

From [DJS] we recall the following

LEMMA 2.10. The canonical cubical subdivision of a simple chamber
complex X is nonpositively curved if and only if the following two conditions
are satisfied :

(1) for each chamber P of X the boundary OP of the dual simplicial polytope
is a flag complex;

(2) for each vertex v of X the link X, is a flag complex.

In view of Lemma 1.1, we can summarize the considerations of this
subsection in the following

PROPOSITION 2.11. Let K be a chamber complex satisfying the following
conditions :

(1) all cells K are simple zonotopes;
(2) the links of K at all vertices are gallery connected and foldable.

Then the cubical subdivision Kg is nonpositively curved and its universal
cover with the induced cubical structure is a foldable chamber complex.

POLYGONAL COMPLEXES

Recall that a 2-dimensional cell complex 1s called a polygonal complex.
Polygonal complexes arise naturally in combinatorial group theory. The class
of polygonal complexes is very rich, see [Bar], [BB], [BS], [Be], [Sw].

Since polygonal complexes are simple, Remark 2.9 and Proposition 2.11
imply the following assertion.

PROPOSITION 2.12. Let K be a polygonal complex satisfying the following
conditions :

(1) all 2-cells of K have an even number of sides,

(2) the links of K at all vertices are connected bipartite graphs.

Then the cubical subdivision Kg is nonpositively curved and its universal
cover with the induced cubical structure is a foldable chamber complex.
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A big class of polygonal complexes is constituted by Cayley complexes
of presentations of groups, on which the corresponding groups act freely
by combinatorial automorphisms. Using Proposition 2.12, it is then easy to
decide in terms of the presentation whether a group acting on its Cayley
complex satisfies the assumptions of Theorems 1-3 of the introduction. Many
other examples satisfying these assumptions can be constructed using various
methods, see [BB], [BS], [Sw].

TORIC MANIFOLDS

In this subsection, we recall the construction of toric manifolds from
[DJ2]. Let F be the set of codimension 1 faces of a simple polytope P
of dimension n. A map A\: F — (Z)" is a characteristic function for P,
if for every vertex v of P the set {\F) | F € F,v € F} is a basis for
(Z,)". Let ~ be the equivalence relation on the set P x (Z,)" defined by
(x,8) ~ (x,1) if x € F and s =t mod \(F). Put M(P,\) := P x (Z;)"/~ and
note that M(P,\) is a simple chamber complex with chambers the images
of the sets P x {s} in the quotient. The projection P x (Z,)" — P induces a
combinatorial map 7: M(P,\) — P which is injective on cells of M(P,\).
By Proposition 1.7 of [DJ2], M(P, ) is a closed manifold and it is called a
toric manifold.

PROPOSITION 2.13.  Let P be a simple polytope with even-gonal 2-dimen-
sional faces and X\ be a characteristic function for P. Then the standard
cubical subdivision of the toric manifold M(P, \) is foldable and nonpositively
curved.

Proof.  According to Corollary 2.8, there is a folding ¢ of Pg. Fur-
thermore, we can view the map 7 as a nondegenerate combinatorial map
M(P, \)g — Pg. Then the composition ¢ o7 is a folding of M(P, \)g.

Nonpositive curvature of M(P, \)g follows from Lemma 2.10 since the

links of M(P, \) are isomorphic to the boundaries of hyperoctahedra (simplicial
polytopes dual to cubes). [}

Let X be the universal cover of M(P,\)g with the induced cubical
structure. Then the fundamental group T’ of M(P,)\) acts on X freely by

combinatorial automorphisms and the pair X and T" satisfies the assumptions
of Theorems | and 2 of the introduction.
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RIGHT ANGLED COXETER COMPLEXES

Given a simplicial complex K define the cubical cone C.K to be the
unique cubical complex with distinguished vertex vy satisfying the following
properties :

(1) C.K 1is the union of those cells which contain vy ;
(2) the link (C.K),, is isomorphic to K.

Define the base By of this cone to be the subcomplex consisting of all cells
not containing vy. Then Bg is canonically isomorphic to the standard cubical
subdivision K of K and hence the vertices of Bg naturally correspond to
the simplices of K.

For each vertex v of K define a coface F, in By as follows. Let v' be
the vertex in Bk corresponding to v. Then F, is a subcomplex consisting of
all cells of Bx which contain v’.

Let I be a finite set and M = [m;;] a symmetric matrix indexed by 7 x I.
Assume that m; =1 and my; € {2,400} forall i,j €1, i#j. A right angled
Coxeter group is a group Wy, given by a presentation

Wy = (si | (sis)™)

for some matrix M as above. Any such matrix will be called a right angled
matrix.

For a right angled matrix M define the graph I'y; as follows. The set
{v; | i € I} of vertices of I'y, is in 1-1 correspondence with /, and vertices
v;,v; are connected by an edge if and only if m; = 2. The graph I'y
determines uniquely a flag complex Kj, with the same vertex and edge set:
a set of vertices spans a simplex in K, if and only if any two vertices in
this set are connected in Iy, by an edge.

The Coxeter complex of the right angled Coxeter group W), is the quotient
>y = Wy x C.Ky/~ modulo the equivalence relation determined by all the
equivalences (wp,x) ~ (wz,x) with x € F,, and wflwg =g; forall i € 1.
G. Moussong proved the following [Mo].

PROPOSITION 2.14. The Coxeter complex of a right angled Coxeter
group is a locally compact simply connected nonpositively curved cubical
complex on which the group acts properly and cocompactly by combinatorial
automorphisms.

In addition to Proposition 2.14 we have the following
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LEMMA 2.15. Assume that for some right angled matrix M the complex
Ky is a foldable chamber complex. Then the Coxeter complex Xy is also a
foldable chamber complex.

Proof. Note that C.Kj is foldable since K, is foldable. Let ¢ be a
folding of C.Kj, and p: Xy — C.K)s be the nondegenerate combinatorial map
induced by the projection Wy x C.Ky — C.Kjs. Then clearly the composition
o op is a folding of 2.

Observe that C.Kj; and hence Xy, is dimensionally homogeneous since Ky
is. Hence to show that X, is a chamber complex, it remains to prove gallery
connectedness. To that end let [(w;,C;)] and [(ws, C»)] be two chambers
of Xy . By the gallery connectedness of C.Kj; — which is immediate from
the gallery connectedness of K, — it is clear that there is a gallery connecting
the above chambers if wjw, I = 5;. The existence of a connecting gallery in
the general case follows by induction on the word length of w;w, Vin Wy, O

RIGHT ANGLED BUILDINGS AND GRAPH PRODUCTS OF GROUPS

In [Da] M. Davis defines buildings of type M for a class of matrices
which contains right angled matrices. If M 1is a right angled matrix then any
building of type M is a cubical complex and its apartments are isomorphic
to the Coxeter complex X . It is proved in [Da] that any such building is
nonpositively curved and simply connected. Moreover, since any two cells
of a building lie in a common apartment and since there is a nondegenerate
combinatorial map of a building onto any of its apartments, we have the
following

PROPOSITION 2.16. Let M be a right angled matrix for which the complex
Ky is a foldable chamber complex. Then any building of type M is a simply
connected foldable cubical chamber complex of nonpositive curvature.

Let M be a right angled matrix over 7, and for each i € I let G; be a
group. Define the graph product of the groups G; (with respect to M) as the
quotient of the free product of the groups G;, i € I, by the normal subgroup
generated by all commutators of the form [g;, gjl, where g; € G;, g; € G; and
mjj = 2. Davis proved [Da] that the graph product of groups (with respect to
M) acts cocompactly by automorphisms on a building of type M. He also
showed that the building is locally compact and the action is proper if the
groups G; in the product are finite. Moreover, if the assumptions of Corollary
2.16 for M are satisfied, then the action preserves the folding of the building.
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3. HYPERSPACES AND DUAL TREES

In this section, we assume that X is an n-dimensional simply connected
cubical chamber complex of nonpositive curvature, endowed with the cubical
metric.

HYPERSPACES

Let P be a k-cell in X, 1 < k < n. Any subset of P of the form
{3} x [0,11¥7!, for any isometric identification of P with [0, 1], is called a
wall in P. If Q is a j-cell of X contained in P, 1 <j <k, and W is a wall
in Q, then there is precisely one wall V in P such that VNP = W. Such
a wall V 1s perpendicular to Q in P. In particular, if Q is an edge, there is
precisely one wall V in P such that VN P is the midpoint of Q and V 1s
perpendicular to Q.

LEMMA 3.1. Let P be a k-cell in X and W a wall in P. Then resP
is isometric to res W x [0, 1], where res W := | JV and the union is over the
walls 'V in cells Q € resP such that VNP =W. []

LEMMA 3.2. A wall W in a cell P extends uniquely to a minimal connected
subspace ¥ = Xy C X such that

(1) Z is a union of walls;

(2) resV C X for any wall V C 2.

Moreover,

(3) if Z. intersects a cell P then 2 NresP =rtesW for some wall W of P;
(4) X is locally (and hence globally) convex; and

(5) X\ Z consists of two convex connected components.

Proof. Existence and uniqueness of a connected subspace satisfying
Properties (1) and (2) 1is clear from what was said before. Property (3)
follows from the observation that otherwise it would be possible to find
in X a nontrivial geodesic (contained in %) with the same initial and final
point (belonging to the “selfintersection locus” of X). Property (4) is then
an immediate consequence of (3), Lemma 3.1 and Theorem 1.4(2). Property
(5) follows from the contractibility of X : we have to exclude the existence
of a closed curve in X that crosses 2~ once. Now such a closed curve can
be contracted to a constant curve and a confraction can be put into general
position with respect to X. Then the number of transversal intersections with
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Y does not change mod 2. Since this number is O for the final constant curve,
it cannot be 1 for the initial curve. The two resulting components of X \
are (globally) convex since, by (3) and Lemma 3.1 they are clearly locally
convex. [J

We call the subspaces X as above hyperspaces in X.

DUAL TREES

From now on we assume that X is a simply connected foldable cubical
chamber complex of nonpositive curvature. Fix a folding F: X — C of X onto
an n-dimensional cube C, n = dimX. Label the walls in C by the numbers
1.....n and the panels of C by the label of the corresponding parallel wall.
Lift these labellings by F to the walls and panels in the chambers of X.
Each hyperspace £ in X is a union of walls of chambers of X, and the
labels of the walls in X are the same. Thus we also obtain a labelling of the
hyperspaces. Two different hyperspaces with the same label are disjoint.

Denote by A; the union of the walls with label / in the chambers of X.
Then A; is the union of the hyperspaces labelled i. Moreover, the intersection
of the boundaries of two different connected components of X \ A; is either
empty or a hyperspace with label i. Therefore we can define a graph A" as
follows : the vertices of A7 correspond to the connected components of X\ A; ;
two vertices are connected by an edge if the corresponding components are
adjacent along a hyperspace with label 7. Observe that A’ is a tree since the
complement of any of its edges is disconnected by the separating property of
hyperspaces, see Lemma 3.2(5). We call A} the dual tree to the system of
hyperspaces with label i. Note that in general A may not be locally finite,
even if the initial complex X is. We endow A; with the length metric d
such that each edge has length 1.

Note that the panels of X with label i do not belong to the set A;,
1 <i<n. Thus we can define maps r;: X — Af as follows: a panel of X
is mapped by r; to the vertex of A} representing the component in X \ A;
to which it belongs. This extends uniquely to all chambers of X so that a
chamber P is mapped by 7; onto the edge in A; representing the hyperspace
in X containing the wall of P labelled i and such that r; is isometric in the
direction perpendicular to the wall with label .

The same argument as in the proof of Lemma 3.2(4) shows that the

preimage r!(p) of any point p € A7 distinct from a vertex is a convex
subset of X. Moreover, if p is a vertex of A}, then the convexity of the
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subcomplex 7 !(p) C X follows from foldability of links of X at vertices
in view of the following characterisation (see e.g. Lemma 1.7.1 in [DJS]): a
connected subcomplex K in a simply connected nonpositively curved cubical
complex L is convex if and only if for each vertex v of K the link K,
is a full subcomplex of the link L, (which means that a simplex of L,
belongs to K, whenever its vertices belong to K,). The above properties
imply that if o: 1 — X is a geodesic, then r; o o is (weakly) monotonic:
rioo never turns. Furthermore, if ¢ is not constant, then for each ¢ € I there
are i,j€{1,..., n} such that r; 0 0 is injective on (t—¢&,f]NI and rjo0

J J

1S injective on [t t+¢&e)NI1.

EMBEDDING INTO A PRODUCT OF TREES

Consider the map r: X — [[_; A7 defined by r(x) = (r1(x),...,m(x)).
Clearly r is a nondegenerate combinatorial map of cubical complexes, that is,
it is isometric on each cell of X. By what we just said about the image of
geodesics under the maps r;, it follows immediately that r is injective. We
call r the canonical embedding of X into the product of trees [[_, Af.

Recall that 4] is the natural metric in A”. Define two metrics d(;y and
dp) on the product []_, A} by

n

(3.3) dyy =Y df and doy= (D> (d))*.
i=1

i=1

o —

It is easy to see that dp) < d1y < /n-dp), and hence the two metrics are
Lipschitz equivalent. Moreover, we have

PROPOSITION 3.4. The map r is a biLipschitz embedding. More precisely,
if x and y are points in X, then

dio)(r(x), 7(y)) < d(x,y) < dy(r(x), r(y)) -

where d denotes the cubical metric on X.

Proof. The first inequality follows from the fact that r restricted to any
chamber of X is an isometry. The second inequality is obviously true for x
and y belonging to the same chamber of X. It extends to arbitrary x and
y since for each geodesic ¢ in X, r; o o is monotonic and hence, up to
parameter, a geodesic in A]. [
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EQUIVARIANCE PROPERTIES OF THE CANONICAL EMBEDDING

It follows from gallery connectedness of X that the folding map £: X—=C
is unique up to an automorphism of C, so that a group [' acting by
automorphisms on X has a well defined homomorphism into the group
Aut(C) of all automorphisms of C. The kernel I" of this homomorphism 1s
a finite index subgroup in T, it preserves all the sets A; and hence acts by
automorphisms on the dual trees A7 .

From now on, we assume that I' preserves the folding of X and hence the
labelling of the walls. Then I" acts on the dual trees A; and the maps r; are
equivariant with respect to these actions. Therefore the canonical embedding
r is equivariant with respect to the diagonal action of T' on the product
[T, Af. This completes the proof of the first assertion of Theorem 1 in the
introduction.

Since r is equivariant, it follows that Stab(I',x) C Stab(I', 7(x)) for each
x € X, where Stab(G, p) denotes the stabilizer of a point p with respect to a
transformation group G.

PROPOSITION 3.5. For each p € [|._, Af, there is a point x, € X such
that Stab(T',p) C Stab(T', x,). In particular, if T does not have a fixed point
in X, then T acts without a fixed point on at least one of the trees A;.

Proof. If p is in the image of r, then the assertion follows from the
injectivity of r. If not, let 6 be the distance of p to the image of r with
respect to the metric dy. Take the ball B(p,26) of radius 20 about p
in ([]_, Af,d). The preimage r~'(B(p,26)) is then a bounded nonempty
subset of X by Proposition 3.4. Let x, be its circumcenter, i.e. the center
of the unique ball with smallest radius containig this subset, see [Ba, p. 26].
Since I' acts by isometries with respect to d), B(p,20) is fixed by each
automorphism in Stab(I', p). Since r 1s equivariant and I" acts by isometries
on X, each such automorphism fixes »~!(B(p,26)) and hence Xp . ]

Our next proposition is a special case of a more general result of M. Bridson
[B2]. Together with Proposition 3.5, it completes the proof of Theorem 1 of
the introduction. For the convenience of the reader we include a short proof
adapted to our case of folded cubical complexes.

PROPOSITION 3.6. Let X be a simply connected, folded cubical chamber

complex of nonpositive curvature. Then any automorphism of X is semisimple,
L.e. elliptic or axial.

B
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Proof. Let ¢ be an automorphism of X. If ¢ fixes a point p of A,
then p can be chosen as a vertex or a midpoint of an edge. If p is a vertex,
then the preimage X’ of p under r; is a closed and convex subcomplex
of X. If p is the midpoint of an edge, X’ is a hyperspace and as a union of
walls, carries a natural cubical structure. In either case, X’ is a closed, convex
and ¢-invariant subset of X, and therefore ¢ is semisimple if and only if
the restriction ¢|xs is semisimple. Since moreover X’ is a simply connected
folded cubical chamber complex of nonpositive curvature and of dimension
lower than X, we can assume by induction on dim X that the action of ¢ on
all the trees A is axial.

Let a; be an axis of ¢ in AF (unique up to parameter). Let X; = r; ! (a;).
Since r; is surjective, X; is non-empty. Furthermore, X; is a closed, convex
and @-invariant subcomplex of X.

Set Y := X;. The image of Y; under r;, is path connected and ¢-invariant,
hence contains a. Let ¥, = Y; NX,. Then Y, is non-empty, closed, convex
and @-invariant. By induction we get that ¥ = X; N ... N X, is a non-empty,
closed, convex and ¢-invariant subcomplex of X. It is then sufficient to prove
semisimplicity for the restriction ¢|y. Note that ¥ = r~!(F), where F = R”
1s the flat

F= {(al(t1>7 s 7an(tn)) l I € R}

in the product of trees. Now ¢ operates as a translation on F, hence the
displacement of ¢ on F is constant, say = 6. Since r is injective, we can
consider Y as a closed subcomplex of F, namely a union of chambers. The
metric on Y is the induced path metric. It follows easily that there are only
finitely many possible values for the distance in ¥ from a point x to its image
wx, if the location of x in its chamber is given. [

4. NONEXISTENCE OF FREE SUBGROUPS

In this section we discuss the proof of Theorem 2 of the introduction. We
assume throughout this section that X is a simply connected folded cubical
chamber complex of nonpositive curvature and that I C Aut(X) is a group that
preserves the folding of X (this can be always assumed by passing to a finite
index normal subgroup if necessary) and does not contain a free nonabelian
subgroup acting freely on X. By equivariance of the maps r;, the same holds
for the actions of I" on the trees Af. Up to a subgroup of index two, there
are three possibilities for each particular i [PV]:
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(0) T fixes a point of A ;
(1) T fixes no point of A}, but precisely one end of A} ;

(2) T fixes no point of A}, but precisely two ends of A}.
Thus by passing to a subgroup of I' of index at most 2", we can assume that
the above three alternatives hold for all i. Corresponding to the alternative,
we say that i is an index of type 0, 1 or 2 respectively.

We first construct a homomorphism 4 = (h;, ..., h,): T — Z" as claimed.
If T fixes a point of A, we define A4; to be the trivial homomorphism. If T
does not fix a point of A, we let w; be the end or one of the two ends of
A7 fixed by I'. The Busemann function b;: A7 — R at w; is well defined up

to an additive constant (see [Ba], Section 1 of Chapter II). Since T fixes wj,

hi<¢) = bl(¢p) - bi(p)a P € AT ;

is a well defined homomorphism 4;: I" — Z, called the Busemann homomor-
phism. Note that h; is integer valued since A is a simplicial tree and I" acts
by automorphisms. This completes the definition of & = (k. ..., h,). We set

7 7

Aj =kerh; and A=A, =kerh.

PROPOSITION 4.1. A consists precisely of the elliptic elements of T,

Proof. 1If the action of I" on A} has a fixed point, then any ¢ € ' is
elliptic on A; and A; =T. If I does not have a fixed point in A¥, but fixes
a point & € Af(o0) and ¢ € T is axial on A}, then & is an end point of the
axis of ¢. Then h;(¢) # 0. Hence by Proposition 3.5, any ¢ € A is elliptic
on X. Conversely, if ¢ €T is elliptic on X, then ¢ € A. []

For the proof of the other assertions of Theorem 2 we need some more
preparations.

LEMMA 4.2, Let A be a simplicial tree on which T acts by automorphisms.

Suppose A fixes a point of A. Then either T fixes a point of A or exactly
two points in A(c0).

Proof.  Since A is a normal subgroup of T, the set ® of fixed points of
A is T-invariant. Now @ is a subtree of A, hence we can assume @ = A.
Then the quotient action by I'/A on A is well defined.

Suppose that I'/A contains an element ¢ which is axial on A. Since /A

is abelian, it leaves the unique axis of ¢ invariant and fixes the endpoints of
the axis.
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Suppose now that all elements of I'/A are elliptic on A. Let ¢,..., ¢, be
a system of generators. The set of fixed points of ¢ is a I'/A-invariant subtree.
Replacing A by this subtree, we can assume that ¢; = id,. The quotient of
I'/A by the subgroup generated by ¢; is abelian and has a system of k — 1
generators. Induction on k shows that I has a fixed point. [

If i is an index of type 0 and p € A} a fixed point, then X' := r7!(p) C X
is closed, convex and I'-invariant. In particular, X'(co0) C X(c0) is I'-invariant.
Although X’ is not a subcomplex if p is not a vertex, it is parallel to the
walls with label i in the chambers it intersects. Hence we obtain a natural
cubical structure on X’ with a folding onto an (n — 1)-cube, and T" preserves
this cubical structure and folding. Hence by passing to such subspaces if
necessary, we can assume that no indices of type O occur.

Let i be an index of type 2. Let «;, w; € Af(0c0) be the fixed points of
I' and o; the unit speed geodesic from «; to w;. Then o; is I'-invariant and
A; = Stab(c;(t)) for all + € R. Hence X' = r;!(im 0;) is a closed, convex
and I -invariant subcomplex of X. Hence by passing to such subspaces if
necessary, we can assume that A7 = im o; = R for all indices i of type 2.

PROPOSITION 4.3. [If there are no indices of type 1, then there is a T -
invariant convex subset E C X isometric to a Euclidean space of dimension
k€{0,...,n} and an exact sequence

0—=A—->T —=7ZF—=0

such that A fixes E pointwise and such that the quotient T/A =2 ZF acts on
E as a cocompact lattice of translations.

Proof. After reductions as above we can assume that all indices are of
type 2, that A¥ = R for all i and that A fixes each point of [ A;. Since r
is an injection, A fixes each point of X.

The image im A of the homomorphism % is a subgroup of the group
Z", hence it is isomorphic to Z* for some k < n. Thus we may identify
the quotient group I'/A with ZF. Consider the quotient action of ZF =T'/A
on X, which is well defined since A acts trivially on X. This action is free
and the elements are semisimple by Proposition 3.6. Applying the Flat Torus
Theorem, see [CE] and [BH], we get that there exists a Zf-invariant convex
subspace E C X, isometric to k-dimensional Euclidean space, such that ZF
acts on it as a cocompact lattice of translations. L]

o
o
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We now discuss the more difficult case that indices of type 1 occur. As
explained above, we can assume that no indices of type O occur and that
AF = R for all indices of type 2.

Choose a vertex xp € X as an origin. For indices of type 2 choose the
parameter on the above geodesics o; such that ¢;(0) = ri(xp). For indices
of type 1 we denote by w; € A7(c0) the corresponding fixed point. For
these indices, we let o;: [0,00) — A} be a unit speed geodesic ray with
0,(0) = ri(xp) and o;(c0) = w;.

We set F = 1m o; X --- x im o,. Note that F is a closed and convex
subspace of [[A;. We also define a geodesic ray

0:[0,00) = F by o) = (01(1),...,0u(0).

By construction, o(0) = r(xg).

LEMMA 4.4. Stab(o(t)) — A; and Stab(o(t)) — A as t — oo, where the
limit of groups is understood as the union of increasing family.

Proof. Let ¢ € A;. Then ¢ fixes w; = o;(c0). Therefore ¢ o o; is
asymptotic to o;. Now A is a tree, hence ¢ o 0;(t) = o;(t + ¢) for all ¢
sufficiently large, where ¢ is some constant independent of ¢. Since ¢ € A;,
¢ =0 and therefore ¢ € Stab(c;(r)) for all ¢ sufficiently large. ]

COROLLARY 4.5. There exists a sequence (x,,) in X such that Stab(x,,) — A.

Proof.  We observe that Stab(x) C A for all x € X. Now the assertion
follows immediately from Proposition 3.5 and Lemma 4.4. [

LEMMA 4.6. If the group T fixes precisely one point w; € A7 (c0), then
A M Stab(o(t)) has infinitely many jumps as t — oo.

Proof. Let ¢ € A C A;. By Lemma 4.4 there is ts =2 0 such that
¢ € Stab(o,(r)) for all 7 > t4. Hence if AN Stab(o;(¢)) = AN Stab(c;(¢)) for
all ¢,¢ sufficiently large, then A C Stab(o,(2)) for all ¢ sufficiently large. By
Lemma 4.2, I either fixes a point of A¥, which is excluded by our reductions

above, or I" fixes exactly two points of A¥(co), which is in contradiction to
the assumption. [

LEMMA 4.7. Let (x,) be a sequence in X such that Stab(x,) — A
and ~,,: [0,s,] — X be the unit speed geodesic from xq to x,,, where
Sm = d(xo,Xm). Then given a constant ty > 0, there exists mo such that
Sm 2>ty and r o v, ([0,50]) € F for all m > .
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Proof. For those i for which ' fixes exactly one point w; € Af(c0)
we choose ¢; € A such that ¢; ¢ Stab(oy(r)) for t < 1y, see Lemma 4.6.
By assumption, there is mygy such that ¢; € Stab(x,,) for all m > my and
all such i. Now r; o, 1s a monotonic curve in A} from o;(0) = ri(xo)
to r;(x,). By equivariance of r;, ¢; € Stab(ri(x,,)) for all m > my. On the
other hand, r; o 0 has speed < 1, hence by the choice of 7y, s, > fp and
ri(ym(0) € 0:([0,5]) for 0 <t < 1.

The claim follows since the image of r; is o; for those i for which I
fixes exactly two ends of A¥. [

LEMMA 4.8. Given ¢ € I, there is a constant ¢ = cg such that
d(p(p),p) < c¢ for all p € F.

Proof. We show that d;(¢(p), p) < ¢; for each point p in the image of o;.
This 1s clear for those indices i for which I' fixes exactly two ends of Af.
Consider some other index i. Then o; i1s defined on [0, c0).

If ¢ is elliptic on A}, then ¢ € A;. By Lemma 4.4, there exists a constant
ty such that ¢ fixes o;(¢) for all r > t4. We conclude that di(¢(p),p) < 2ty
for each point p in the image of o;.

We assume now that ¢ is axial on A and let p be an axis of ¢ in A]. We
parametrize p such that p(co) = w;. Since A’ is a tree and o;(c0) = p(c0),
we can actually choose the parameter such that o;(r) = p(z) for all 1 > 14,
where t4 is an appropriate constant. Now ¢(p(1)) = p(t+7) for some constant
7 independent of . We conclude that d;(¢(p),p) < 2ts + 7 for each point p
in the image of o;. [

PROPOSITION 4.9. Suppose that indices of type 1 occur. Then
(1) A does not fix a point of X ;

(2) T fixes a point in X(c0). More precisely, if (x,,) is a sequence in X such
that Stab(x,,) — A, then after passing to a subsequence if necessary, (x)
converges to a fixed point £ € X(oco) of T.

Proof. The first assertion is an immediate consequence of Lemma 4.7.
As for the proof of the second assertion, let (x,) be a sequence in X with
Stab(x,,) — A. Let v,,: [0,5,,] — X be the unit speed geodesic from xy to x,,
as in Lemma 4.7. Note that r oy, is a sequence of unit speed curves (with
respect to the metric d(z), for which r restricted to any chamber of X is an
isometry) in [] Af. For each constant #o > 0, ro,([0, #]) is contained in F
for all m sufficiently large. Now F is locally compact, hence a subsequence of
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the sequence of curves ro-y, converges locally uniformly. By Proposition 3.4,
the corresponding subsequence of the sequence of unit speed geodesics
converges locally uniformly. By definition, this means that the corresponding
subsequence of (x,) converges to a point £ € X(c0).

Let ¢ € T and choose ¢ = ¢y as in Lemma 4.8. Let #p > 0 be given. By
Lemma 4.8 we have r o ,(ty) € F for all m > mgy. By Proposition 3.4 and
Lemma 4.8, we have d(¢(Vn(t0)), Ym(t0)) < v/ncy for all such m. Now cg4 is
independent of 7y, hence ¢(&) =¢&. [

We now complete the proof of Theorem 2 of the introduction. By
Proposition 4.1, A = kerh consists precisely of the elliptic elements of I'. If
indices of type 1 do not occur, then Proposition 4.3 applies: If k& = 0, then
I' 2 A fixes a point of X and possibility (1) holds. If k¥ > 0, then possibility
(2) holds. If indices of type 1 occur, then possibility (3) holds by Proposition
4.9 and Corollary 4.5. Note that Stab(x) # A for any x € X in this case since
A would have a fixed point otherwise.

5. PARALLEL TRANSPORT IN A CUBICAL MANIFOLD
AND THE PROOF OF THEOREM 3

Let X be a cubical manifold of dimension n. Given two chambers P and
Q in X with a common face of dimension n — 1, we define tpp: P — Q to
be the translation which moves each point p of P along the unit geodesic
segment starting at p and orthogonal to the common (n — 1)-face of P to the
end point in Q. The map fpp is an isomorphism and isometry of P with Q.

Given a gallery m = (Py,...,P,) in X, the parallel transport along m is the
isomorphism #,: P; — P, given by

tw :=1p,_p, O Olppy Olpp,.

LEMMA 5.1.  Let X be a simply connected cubical manifold and assume
that the number of chambers adjacent to each face of codimension 2 in X
is divisible by 4. Then for any two chambers P and Q in X, the parallel
transport tr along a gallery m connecting P and Q is independent of .

Proof. It is enough to show that the parallel transport along any closed

ggﬁigallery is the identity. Let 7 be such a gallery with initial and final chamber P.
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Represent 7 by a closed curve ¢ which starts and ends in some interior point
p of P, such that ¢ misses the (n—2)-skeleton of X and crosses (n— 1)-faces
transversally and according to the pattern provided by 7. Since X is simply
connected, the curve ¢ can be contracted in X to the point p. Since X 1is
a manifold, the links of the vertices in X are (n — 2)-connected. Hence the
contraction of ¢ can be chosen to be generic in the sense that it misses the
(n—3)-skeleton of X and crosses the (n—2)-skeleton transversally. Following
the curve ¢ along this contraction, we get a sequence of modifications of
the gallery m. These modifications occur when ¢ crosses an (n — 2)-face
of X. The condition that the number of chambers adjacent to such faces is
divisible by 4 implies that the parallel transport 7, does not change under
these modifications. Since the parallel transport along the trivial gallery is the
identity, ¢, = idp. L]

From now on we assume that X is a simply connected cubical manifold
such that the number of chambers adjacent to each face of codimension 2 in
X 1is divisible by 4. For chambers P and Q in X define tpp = t,, where
7 1s any gallery connecting P with Q. The above lemma shows that tpp 1is
well defined.

We fix a chamber Py of X and define a homomorphism ¢: I" — Aut Py
by

() = tgpo)ps © 9P, -

The kernel T” := ker¢ is a finite index subgroup of I" and consists
precisely of those automorphisms of I' whose restriction to any chamber
commutes with the corresponding parallel transport.

COORIENTATIONS

A coorientation of a wall in a chamber is a choice of one of the two half-
chambers determined by the wall. Once and for all, we choose coorientations
of the walls in the above chamber Py. Now by Lemma 5.1, parallel transport
gives rise to a consistent choice of coorientations for all walls in X.

By Corollary 1.3, X is foldable. We fix a folding and denote by A; the
set of hyperspaces of X with label i. Note that A; is invariant under parallel
transport. Along a hyperspace with label i, the half-chambers distinguished
by the coorientation are all contained in the same halfspace with respect to
the hyperspace. The above group I"” preserves the families A; together with
the coorientations.
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The index of intersection of an oriented curve ¢ at a transversal crossing
of a hyperspace H € A; is defined to be equal to +1 or —1 respectively,
according to whether the orientation of ¢ coincides with the coorientation of
H or not. Fix a point pg in the interior of Py which does not belong to any
wall and any of the chosen coorientations. For p € X define fi(p) to be the
sum of the indices of intersection of an oriented curve ¢ connecting po and
p with the hyperspaces from A;. Here we assume that ¢ is generic, 1.e. ¢
does not meet the (n—2)-skeleton and crosses hyperspaces transversally. The
integer f;(p) does not depend on ¢ since X is simply connected and any two
such curves can be deformed into each other by a homotopy which misses
the (n —3)-skeleton of X and crosses the (n—2)-skeleton of X transversally.

For g € I' set h;(g) = fi(g(po)). Since the chosen system of coorientations
is invariant under the action of I", the maps h;: I — Z are homomorphisms.
We finish the proof of Theorem 3 by showing that the image of & = (A, ..., h,)
is of finite index in Z".

We need to show that the image of % contains n linearly independent
vectors. To that end, we show that the image contains non-zero vectors which
span arbitrarily small angles with the unit vectors ¢; in R", 1 < i < n. Let
o be a unit speed geodesic ray with o(0) = py which is perpendicular in Py
to the wall with label /. By the choice of pg, the ray o does not meet the
(n—2)-skeleton of X and is perpendicular to all (n — 1)-faces and walls with
label i which it intersects. We have

filotm)) = b;-m, m>1.

By the cocompactness of the action of I, there is an integer k > 1 such that
for any m > 1 there is a g, € I with d(o(m), gu(po)) < k. By the definition
of h; this implies |hj(gn) — fi(c(m))| < k. Theorem 3 follows.
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