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THEOREM. Let n be a positive, squarefree integer with either n = 1
(mod 4) or n = 2 (mod 4) and with (a,2n) = 1, and let j be a positive
integer with (j,2n) =1 and 1 <j<n. Then if (1}”) = +1, we have

If j =1, the result is due to Dirichlet [3], [4]. We illustrate the theorem

when n =13 and j = 3. Then (=2) = (5}) = —1. Thus

1 <& [—52
h(—=13) = 5 z:; (7> .

Now (2) = (5%) = (52%) = (322) = +1, and so h(—13) = i(4) = 2.
The study of class numbers relating values of the Jacobi symbol (2) to
h(—n) when n =3 (mod 4) in subintervals other than (0, %) has been given
by numerous authors. These include among others, Berndt [1], Berndt and
Chowla [2], Dirichlet [3]-[4], Holden [5]-[11], Hudson and Williams [12],
Johnson and Mitchell [13], Karpinski [14], and Lerch [15]-[16]. A partial

summary of these results appears in [12].

2. PROOF OF THE THEOREM

We first note that j 1s an odd, positive integer with (j,n) = 1. We write

2n—1 _4p j—1

> (SH)-1s

a=1 r=0
(a,2n)=1

where
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2n—1 ,_4
S, = Zl (-le)

- a=r (mod j)
(a,2n)=1

If 1 <r <j—1, then there exists a uniqu.e integer k suchthat 1 <k <j—1
and 2kn = r (mod j) because (j,n) = 1.If a =r (mod j) with 1 <a <2n—1
and (a,2n) =1, then we observe that 2kn —a = 0 (mod j). Now

(%)= =2a)

if k£ 1s odd, and

if k 1s even. Thus,

(%]
g
e

—4n
-+(5) %
a=| @=2n] 4

(a,2n)=1

=)

where the plus sign holds if k is odd and the minus sign holds if k is even.
Thus we have for each j,

’ (a,2f2):1
4 J [%] 2n—1
—4n —4n —4n
+ | — E E NG R E
< J > —1 s < a ) - ( a )
=112 )H]IH (@)=
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It then follows that

if (%) =+1, and

if (=) = —1. In the case that (=) = +1, we are only considering those k
which are even, and so we may write k = 2i. In the case that (:Jﬂ’l) =—1, we

are only considering those k which are odd, and so we may write k =2i+1.

Thus we have proven that for each j,

J

—

4in |
J

T

[
0 —

]
R
.5
2=

i=1

a:[ (4:’72);1] +1
(a,2n)=1

if (=)= 41, and

J

if (:]4—”) — —1. These subintervals clearly cover [1,2n — 1] and are non-
overlapping. Now Dirichlet [3], [4] showed that

2n—1
3 <_—4”> = 2h(—n).
a
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It follows at once that

IR —4
ien=33 ()

3. REMARKS

In Bruce Berndt’s paper “Classical Theorems on Quadratic Residues™ [1],
he uses the following notation:

Si= >, xmn.

———(i_jl)k <lz<i7’-"
Using this notation, we can rewrite the class number formulae as follows:

1. If (—_%7-) — +1, then we have

J=i

1 2
h(—n) = 2 E S 2i41 -
=0

2. If (“j ”) — —1, then we have

i=1
1 2
h(—l’l) = 5 Z Sj,Zi .
i=1
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