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THEOREM. Let n be a positive, squarefree integer with either n 1

(mod 4) or n 2 (mod 4) and with (a, 2n) 1, and let j be a positive
integer with (/, 2ri) — 1 and 1 <j<n. Then if (—p) =+.1, we have

[ (4/+2).]

*->- 5 Ê É (^4"
f=0fl=[fUi

anJ if (-—) — 1, w<? /zav<?

Ezi [

«->-£ É (^4"
i=»l a=[(4^]+1

If j 1, the result is due to Dirichlet [3], [4]. We illustrate the theorem
when n= 13 and j 3. Then (Tp) (p-) — 1. Thus

a=9 ^ 7

Now (^f2) (=^) (=^) +1, and so 13) ±(4) 2.
The study of class numbers relating values of the Jacobi symbol (^) to
h(—n) when n 3 (mod 4) in subintervals other than (0, |) has been given

by numerous authors. These include among others, Berndt [1], Berndt and

Chowla [2], Dirichlet [3]-[4], Holden [5]-[ll], Hudson and Williams [12],
Johnson and Mitchell [13], Karpinski [14], and Lerch [15]—[16]. A partial

summary of these results appears in [12].

2. Proof of the theorem

We first note that j is an odd, positive integer with (j^ri) — 1. We write

2n-l / a \ J-1

£ {=r)-5>
a=l V 7 r=0

(a,2n)=l

where
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s,= £
2n—\ / AAn

<2=1
a=r (mod j)

(<2,2n)=l

a

If 1 < r < j— 1, then there exists a unique integer k such that 1 < k < j — 1

and 2kn r (mod j) because (/', n) 1. If a r (mod j) with 1 < a < 2n— 1

and (a, 2n) 1, then we observe that 2kn — a 0 (mod j). Now

—4n\ / —An

if k is odd, and

if k is even. Thus,

a J \2kn — a

—An\ —An

a J \ 2kn — a

2kn /
s y —a=y-2)

<2=0 (mod /)
(<2,2n)=l

2kn

± £ a
a=(2k—2)n

<2=0 (mod /)
(a,2n)=l

±(z£) yJ
«=[ß^]+i

^ a

(a,2/z)=l

where the plus sign holds if k is odd and the minus sign holds if k is even.
Thus we have for each j,

0= ,S, (T
«=1 (2À.--2)/! 1

(k,2)=2fl~^ —J—J +1

(a,2n)=l

+
J J 7_J r \ a J \ a

(b ÖT 1 a=\ (2A"~2)" +1 a=l(^j2)=l 1 ; J+1 (a,2n)=l
(a,2n)=l
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It then follows that

o -*£ E
k=l n—\ (U~2)n

-An

a
(*,2)=2 a=[ ^zAUlj +1

(a,2n)=l

if (p) +1, and

[2fe]
J

L

J
J

»=-E E
k=l „—I (2k~2)n

—An

a
(*,2)=1 apup^j+1

(a,2n)=l

if (-p) — 1. In the case that (~p) +1, we are only considering those k

which are even, and so we may write k 2i. In the case that (—p) — 1, we

are only considering those k which are odd, and so we may write k 2i +1.

Thus we have proven that for each j,

if < fü)+ 1, and

»-T. Z
i=la=[(4i-2J2]+1

(a,2n)=l

i<u+2)n

—An

a
° E E

>-° a=[ f]+l
{a,2n)=\

if (pp) — 1. These subintervals clearly cover [l,2n— 1] and are non-

overlapping. Now Dirichlet [3], [4] showed that

Cl= 1 7

(a,2n)=l
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It follows at once that

/ -i [ LF±T>i]

-An
h('n)=-2^ 2. I"

'-0 a=[f] +1

if (=4») +1, and

ht~n\=
2

r ^ V a

lf f)•1.

1 X—a f—An

'=•1 a_[ Sä=2H] +i

3. Remarks

In Bruce Berndt's paper "Classical Theorems on Quadratic Residues" [1],
he uses the following notation:

Sft Y*(") •

Using this notation, we can rewrite the class number formulae as follows :

1. If (zzjR) +1, then we have

.7—1

h(~n) 2HV2/+1 •

7=0

2. If — 1, then we have

j-1

K-n)=\Y
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