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CLASS NUMBER FORMULAE FOR IMAGINARY QUADRATIC
NUMBER FIELDS Q(/—n) WITH n SQUAREFREE AND
n=1 (mod4) OR n=2 (mod 4)

by Richard H. HUDSON, Charles J. JUDGE and Turker TEKER

1. INTRODUCTION AND SUMMARY

Let Q(/—n) denote an imaginary quadratic number field where throughout
n will always be a positive, squarefree integer and let A(—n) denote its class
number. Berndt and Chowla [2] showed that if p = 3 (mod 4), then the
Legendre symbol (l%) summed over certain subintervals of (0,p) is equal
to zero. The result leads immediately to interesting class number formulae
in terms of the remaining subintervals of (0,p) using Dirichlet’s classical
results ([3], [4]), and the results are easily generalized to composite moduli
n = 3 (mod 4). Berndt and Chowla remark that it would be interesting to
obtain similar results for p =1 (mod 4). In this paper we show that a simple
and elementary modification of Berndt and Chowla’s method, when used
in conjunction with the Jacobi symbol (=) in subintervals of (0,2n), as
suggested by Dirichlet [3], [4], leads to class number formulae relating values
of (=) in subintervals of (0,2n) to h(—n) for either n = 1 (mod 4) or
n =2 (mod 4). In particular, in section two we prove the following theorem
(throughout [x] denotes the greatest integer < x).
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THEOREM. Let n be a positive, squarefree integer with either n = 1
(mod 4) or n = 2 (mod 4) and with (a,2n) = 1, and let j be a positive
integer with (j,2n) =1 and 1 <j<n. Then if (1}”) = +1, we have

If j =1, the result is due to Dirichlet [3], [4]. We illustrate the theorem

when n =13 and j = 3. Then (=2) = (5}) = —1. Thus

1 <& [—52
h(—=13) = 5 z:; (7> .

Now (2) = (5%) = (52%) = (322) = +1, and so h(—13) = i(4) = 2.
The study of class numbers relating values of the Jacobi symbol (2) to
h(—n) when n =3 (mod 4) in subintervals other than (0, %) has been given
by numerous authors. These include among others, Berndt [1], Berndt and
Chowla [2], Dirichlet [3]-[4], Holden [5]-[11], Hudson and Williams [12],
Johnson and Mitchell [13], Karpinski [14], and Lerch [15]-[16]. A partial

summary of these results appears in [12].

2. PROOF OF THE THEOREM

We first note that j 1s an odd, positive integer with (j,n) = 1. We write

2n—1 _4p j—1

> (SH)-1s

a=1 r=0
(a,2n)=1

where
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2n—1 ,_4
S, = Zl (-le)

- a=r (mod j)
(a,2n)=1

If 1 <r <j—1, then there exists a uniqu.e integer k suchthat 1 <k <j—1
and 2kn = r (mod j) because (j,n) = 1.If a =r (mod j) with 1 <a <2n—1
and (a,2n) =1, then we observe that 2kn —a = 0 (mod j). Now

(%)= =2a)

if k£ 1s odd, and

if k 1s even. Thus,

(%]
g
e

—4n
-+(5) %
a=| @=2n] 4

(a,2n)=1

=)

where the plus sign holds if k is odd and the minus sign holds if k is even.
Thus we have for each j,

’ (a,2f2):1
4 J [%] 2n—1
—4n —4n —4n
+ | — E E NG R E
< J > —1 s < a ) - ( a )
=112 )H]IH (@)=
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It then follows that

if (%) =+1, and

if (=) = —1. In the case that (=) = +1, we are only considering those k
which are even, and so we may write k = 2i. In the case that (:Jﬂ’l) =—1, we

are only considering those k which are odd, and so we may write k =2i+1.

Thus we have proven that for each j,

J

—

4in |
J

T

[
0 —

]
R
.5
2=

i=1

a:[ (4:’72);1] +1
(a,2n)=1

if (=)= 41, and

J

if (:]4—”) — —1. These subintervals clearly cover [1,2n — 1] and are non-
overlapping. Now Dirichlet [3], [4] showed that

2n—1
3 <_—4”> = 2h(—n).
a




CLASS NUMBER FORMULAE FOR IMAGINARY QUADRATIC FIELDS 353

It follows at once that

IR —4
ien=33 ()

3. REMARKS

In Bruce Berndt’s paper “Classical Theorems on Quadratic Residues™ [1],
he uses the following notation:

Si= >, xmn.

———(i_jl)k <lz<i7’-"
Using this notation, we can rewrite the class number formulae as follows:

1. If (—_%7-) — +1, then we have

J=i

1 2
h(—n) = 2 E S 2i41 -
=0

2. If (“j ”) — —1, then we have

i=1
1 2
h(—l’l) = 5 Z Sj,Zi .
i=1
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