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5. LOWER BOUNDS

Now we will consider generalized Fglner sequences for functions f such
that

Pf > ||Plf.

This will enable us to obtain some lower bounds on the norm of random
walk operators on graphs.

As in Section 3, let X be a connected, locally finite graph and let P be
the simple random walk operator on X.

In this section we will prove the following lower bound on the norm ||P|| :

THEOREM 8. Let X be a graph such that at each vertex there are at most
k edges. Then
2vk —1

1Pl > 2

The norm of the random walk operator |P| is equal to 2————”;“1 for the
random walk on the tree which has k edges at each vertex. In [9] Kesten

proved this lower bound in the case of Cayley graphs.

Proof of Theorem 8. Let us consider a graph X such that at each vertex
there are at most k£ edges. We can suppose that &k > 3 because for k = 2
we obtain subgraphs of Z or finite graphs, and necessarily ||P|| = 1. As it is
enough to prove the desired bound for any connected component of X, we
can suppose that X is connected.

In order to show that ||P|| is large enough, we will construct a sequence
of functions f, € (X, N) such that

i sup H f Hl (X,N) —>_ .
n——+o00o “fn“lz(x,N) k

Let us endow the set of vertices of X with a metric. The distance between
two vertices 1s the smallest number of edges needed to connect them. Let us

choose a vertex e in X and for a vertex v let us denote by |v| its distance
from e.

Let f be the unique (up to translations and multiplications) radial
eigenfunction of P on the homogeneous tree of degree k, corresponding
to the eigenvalue 2——”12_1 which is the norm of P on this tree, i.e.
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k—2 1\
as) = g(oh = (5 ol+1) ( —)

Using (15) we can define f on X. We then prove

LEMMA 6. For any vertex v € X,

Pf(v) 2 > 2 f (V).

Proof. If v = e the result is clearly true. Let us consider then a vertex
v € X such that n = |v| > 1. Let the number of neighbors of v which are at
a distance n—1 or n from e be equal respectively to p and ¢. So the number
of neighbors of v which are at a distance n + 1 is equal to N(v) —p — gq.
Hence

1 .
Pf(v) = —— (pg(n — 1) + qg(n) + (N(v) —p — g@)g(n + 1)) .
N(v)

As p>1and g is a decreasing function,

Pf(v) 2 ——(—) (g(n — 1)+ N() — Dg(n + 1)) .

As Nw)<k and gn—1) > gn+ 1),

2vVk —1

1
Pf(w) > 2 (gn =D + (k= Dgln + 1) = ——

gmy. U

Let us denote by S, and B, the vertices which are respectively at a
distance n and less than or equal to n.

LEMMA 7.

D ves,, S WIN©) .
> ven, JHWIN(V) s

Proof. As 1 < N(v) <k it 1s enough to show that

Zvesn+1f2(7)) 0
Sep fAW) TR

Let us denote

=Y ) =S8’ m).

vES,
As |S,11| < (k—1)|S,| one has
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-2\’
(16) n+1 — |Sn—i-1|gz(n+1) _<_ (k_l)[Sn[gz(n_i_l) = <1 + ( ) a -

k—2n+k

We have to show that

(1'7)

ZUES,,.}.]JCZ(U) . an+1
Socnl W

7 n—00 0.

It is a standard exercise to show that (16) implies (17). [

Let f, be the sequence of functions which are restrictions of f to the
vertices that are at a distance not greater than n:

Jn =f

B, -

By Lemma 6 and Lemma 7 it follows that

Pfullp 2vVk —1
T 1Pl e vy S |
n—-400 anuﬁ(x,m k

which proves Theorem 8. [

Some examples of upper bounds on the norm of the simple random walk
operator on graphs and their comparison with the lower bound from Theorem 8
can be found in [22].
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