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340 A. ZUK

For the above values, / is an eigenfunction of the operator P and satisfies

the generalized Fplner condition. By Theorem 3 the norm of the random walk

operator on Z2*Z4 with the generating subset as defined before is then equal
to

4.2.2 General case

The idea presented for Z2*Z4 can be used in the general case for Z„*Zm.
As the solution involves roots of some polynomial of degree nm, we will not
give details.

4.3 Mean operator on the hyperbolic plane

Let us consider the hyperbolic upper half-plane H {z — x + iy G C;

x G R, y > 0} with a Riemannian metric dnz ^dx^dy which gives rise

to the measure ßH ^pr • We consider the operator P,

where dmR is a uniform probability measure on a hyperbolic circle of radius R.
We want to compute the norm of the operator P acting on L1{H)dHz).

First of all let us remark that the function:

is an eigenfunction of P. An easy way to see this is to note that P

commutes with isometries of H and that the isometries consisting of horizontal
translations and homotheties act transitively on H. The effect of these on the

function / is that they just multiply it by a constant.

Now we would like to show that one can find a Fplner sequence with
respect to the function /. Let us consider a sequence {An}(£Ll of rectangles

(in the Euclidean sense) in H :

(H) f(z) x/ÏMz),

An {z G H ; e n < Im(z) < 1, 0 < Re(z) < n}

It is easy to see that the measure | dAn \ of the boundary of An is bounded

bv the measure of the following set B„ (see Figure 5) :
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Figure 5

Sets An and Bn

Bn ={zGH;-R< Re(z)<R,eR>Im(z) > e~"~R}

U {z G H; -R + n< Re(z) < n > Im(z) > e~"~R}

U {zeH\—R <Re(z)<n+R, > Im(z) > e"R}

U {z G H; —R<Re(z)<n + R, e~"+R > Im(z) > e""~R}

One can see that

I|y2 ~ ft-i \An\fl ^ I •

This shows that is a generalized F0lner sequence. Thus

\\p\y(H,dHz)^LHH,dHz)/
J\z-i\=R

4.4 Wreath products

Let G and F be finitely generated groups. We define the wreath product

GIF of these groups as follows. Elements of GIF are couples (<7,71) where

g: F —> G is a function such that g(7) is different from the identity element

idc of G only for finitely many elements 7 in F, and where 71 is an element

of F. The multiplication in GIF is defined as follows :

(51,71X92,72) (93,7172)

where
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