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4. NORMS OF RANDOM WALK OPERATORS

Now we will show how Theorem 3 can be used in the problem of computing
the norm of the random walk operator P on some groups. Our strategy is as
follows: we want to find a positive eigenfunction for the operator P which
satisfies the generalized Fglner condition. By Theorem 3 such an eigenfunction
always exists and the eigenvalue corresponding to this eigenfunction is equal
to the norm of the operator P. Theorem 3 is a particular case of Theorem 2
which can also be helpful in computing the norms of more general operators
as shown in Section 4.3.

4.1 FREE GROUPS

First of all, as a simple illustration of this method, we will compute the
norm of the simple random walk operator on free groups, which was first
done by Kesten (see [9]) using a different method.

THEOREM 6 (Kesten). Let I' be the free group generated by the standard
symmetric set of generators S. The norm of the simple random walk operator
P associated to (I',S) is equal to

2VHS — 1
1P|l = s

Proof.  The Cayley graph of (I',S) is a homogeneous tree T} of degree
k =#S. We draw the tree T; with level lines as in Figure 3 (level lines are
marked by dotted lines). Let us choose arbitrarily a line as the line of level
0. We construct a function on vertices of this tree which depends only on the
level of the vertex. For a vertex v € Ty we denote by |v]| its level. We define

/T — R4 as follows
1 |v]
V) = :
= (=)

One has

Let A, be the set of vertices in 7} consisting of a chosen vertex e from the

level 0 and the vertices lying below e up to the level n (in Figure 3 the
vertices of A, are marked with circles). Then
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This shows that {4,}22, is a generalized Fglner sequence and by Theorem 3
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4.1.1 REMARKS ON GENERALIZED GROWTH

Let I" be a group generated by a finite, symmetric set S. For id # v €T’
we define its length |v| as the minimal number of generators from S needed
to represent -y, i.e.

|v| = min{n; v=s; ...s;,, s;, €S},

and we declare |id| = 0.

The growth function (see [10], [18]) of the pair (I',S) associates to each
integer n > 0 the number B(I',S)(n) of elements v € T" such that |y| < n,
1.e.

BT, S)n) = #{y €T || < n}.

One is often interested only in the type of the growth function. For instance,
we say that the group I' is of polynomial growth if there exist constants ¢
and D such that

¢~ 'nP < BT, S)(n) < cn®.

The exponent D does not depend on the set of generators §. If the growth
function is bounded by a polynomial, it is known (see [6]) that I" is of
polynomial growth and D is an integer. For a group of polynomial growth
with the exponent D, it is known (see [19]) that there exists a constant c
such that

D
2

(5) ¢t < Pid id) < cn™

?

where P?*(id,id) is the probability of the return to the identity element of
the simple random walk after 2n steps.

It seems natural to define a generalized growth function, using an
eigenfunction of P. Let f be a positive eigenfunction of P corresponding to
the eigenvalue equal to the norm of P, i.e.

Pf = ||P[If .
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The generalized growth function B(T,S,f) associates to each positive
integer n the number

BTSN = >, fo,

y€eT,|v|<n

i.e., each element in the ball of radius » is counted with weight f2.

Let us compute the generalized growth function in a particular case. Let
P be the simple random walk operator on the free group with the standard
set of generators of cardinality k£ as in Section 4.1. Let g be the unique
radial eigenfunction of P corresponding to the eigenvalue ||P|| and such that
g(id) = 1. Explicitly we have:

g(y) = <Tlvl+1> ( k_1> :

Then we have

Y Fy=

vel,|v|<n
k2 — 4k 1+ 4 3k — 8k + 4 Tk* — 16k + 4
3 2
- - 1
" < 3k2 — 3k >+” < 2k2 — 2k & 6k? — 6k T

This shows that the generalized growth is like »n°. In particular the sequence
of balls is a generalized Fglner sequence.

By analogy to (5) we conjecture that the fact that the generalized growth

function for the free groups is like n® explains that for the free groups one
has (see [16]):

3
I < P(id, id) < )3

where ¢ is a constant and )\ is the norm of P.

4.2 FREE PRODUCTS OF FINITE GROUPS

Random walks on free products of finite groups were already considered
in [1], [3], [17] and [21].
Let us consider the group Z,, x Z, with the following generating set:
o if m#2 we take {£1} as generators of Z, = {0,1,...,m — 1};
* we take {1} as a generator of Z, = {0, 1}.
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