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4. NORMS OF RANDOM WALK OPERATORS

Now we will show how Theorem 3 can be used in the problem of computing
the norm of the random walk operator P on some groups. Our strategy is as
follows: we want to find a positive eigenfunction for the operator P which
satisfies the generalized Fglner condition. By Theorem 3 such an eigenfunction
always exists and the eigenvalue corresponding to this eigenfunction is equal
to the norm of the operator P. Theorem 3 is a particular case of Theorem 2
which can also be helpful in computing the norms of more general operators
as shown in Section 4.3.

4.1 FREE GROUPS

First of all, as a simple illustration of this method, we will compute the
norm of the simple random walk operator on free groups, which was first
done by Kesten (see [9]) using a different method.

THEOREM 6 (Kesten). Let I' be the free group generated by the standard
symmetric set of generators S. The norm of the simple random walk operator
P associated to (I',S) is equal to

2VHS — 1
1P|l = s

Proof.  The Cayley graph of (I',S) is a homogeneous tree T} of degree
k =#S. We draw the tree T; with level lines as in Figure 3 (level lines are
marked by dotted lines). Let us choose arbitrarily a line as the line of level
0. We construct a function on vertices of this tree which depends only on the
level of the vertex. For a vertex v € Ty we denote by |v]| its level. We define

/T — R4 as follows
1 |v]
V) = :
= (=)

One has

Let A, be the set of vertices in 7} consisting of a chosen vertex e from the

level 0 and the vertices lying below e up to the level n (in Figure 3 the
vertices of A, are marked with circles). Then
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Y fwy=n+1,
VEA,

> Ay =2.
vEDA,

This shows that {4,}22, is a generalized Fglner sequence and by Theorem 3

2vVk —1

Pl ==

L]

4.1.1 REMARKS ON GENERALIZED GROWTH

Let I" be a group generated by a finite, symmetric set S. For id # v €T’
we define its length |v| as the minimal number of generators from S needed
to represent -y, i.e.

|v| = min{n; v=s; ...s;,, s;, €S},

and we declare |id| = 0.

The growth function (see [10], [18]) of the pair (I',S) associates to each
integer n > 0 the number B(I',S)(n) of elements v € T" such that |y| < n,
1.e.

BT, S)n) = #{y €T || < n}.

One is often interested only in the type of the growth function. For instance,
we say that the group I' is of polynomial growth if there exist constants ¢
and D such that

¢~ 'nP < BT, S)(n) < cn®.

The exponent D does not depend on the set of generators §. If the growth
function is bounded by a polynomial, it is known (see [6]) that I" is of
polynomial growth and D is an integer. For a group of polynomial growth
with the exponent D, it is known (see [19]) that there exists a constant c
such that

D
2

(5) ¢t < Pid id) < cn™

?

where P?*(id,id) is the probability of the return to the identity element of
the simple random walk after 2n steps.

It seems natural to define a generalized growth function, using an
eigenfunction of P. Let f be a positive eigenfunction of P corresponding to
the eigenvalue equal to the norm of P, i.e.

Pf = ||P[If .
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The generalized growth function B(T,S,f) associates to each positive
integer n the number

BTSN = >, fo,

y€eT,|v|<n

i.e., each element in the ball of radius » is counted with weight f2.

Let us compute the generalized growth function in a particular case. Let
P be the simple random walk operator on the free group with the standard
set of generators of cardinality k£ as in Section 4.1. Let g be the unique
radial eigenfunction of P corresponding to the eigenvalue ||P|| and such that
g(id) = 1. Explicitly we have:

g(y) = <Tlvl+1> ( k_1> :

Then we have

Y Fy=

vel,|v|<n
k2 — 4k 1+ 4 3k — 8k + 4 Tk* — 16k + 4
3 2
- - 1
" < 3k2 — 3k >+” < 2k2 — 2k & 6k? — 6k T

This shows that the generalized growth is like »n°. In particular the sequence
of balls is a generalized Fglner sequence.

By analogy to (5) we conjecture that the fact that the generalized growth

function for the free groups is like n® explains that for the free groups one
has (see [16]):

3
I < P(id, id) < )3

where ¢ is a constant and )\ is the norm of P.

4.2 FREE PRODUCTS OF FINITE GROUPS

Random walks on free products of finite groups were already considered
in [1], [3], [17] and [21].
Let us consider the group Z,, x Z, with the following generating set:
o if m#2 we take {£1} as generators of Z, = {0,1,...,m — 1};
* we take {1} as a generator of Z, = {0, 1}.
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In Figure 2 we represent the Cayley graph for Z, xZ, with the above set
of generators. In general the Cayley graph for Z,, x Z, with the generating
set defined above has the following construction:

e m-gons and n-gons are attached to each other;

e at each vertex of an n-gon there is one m-gon attached and at each vertex
of an m-gon there is one n-gon attached.

4.2.1 Zp+24

We will present our method in the special case for Z, x Z4. The Cayley
graph for this group is represented in Figure 2. Our aim is to construct the
eigenfunction f of the random walk operator satisfying the generalized Fglner
condition. By Theorem 3, the eigenvalue corresponding to this eigenfunction
is equal to the norm of a random walk operator. We will construct f in two
steps.

FIGURE 2
Cayley graph for Zy x Z4
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STEP 1. If we contract the squares to points, the Cayley graph for Zo*Zy4
is deformed to the homogeneous tree T, of order 4 (each vertex has 4
neighbors), which is represented in Figure 3. First of all we construct a
function on vertices of 7 satisfying the generalized Fglner condition.

We draw the graph 74 as in Figure 3, i.e. with one point set apart at
infinity. The level lines or horocycles are marked by dotted lines. Each vertex
of 74 has one neighbor above and three neighbors below.

Let us fix two positive numbers r, s and define the positive function g
on the vertices of the tree Ty

g: (vertices of 7y) — R
as follows:
if w is a neighbor of v lying below v then (see Figure 4)
(1) glw) = rg(v) if w is the right or left neighbor;
(2) g(w) = sg(v) if w is the middle neighbor.

The above defines the function g up to a constant. Let us fix one vertex
e (for instance lying on the horocycle of level 0) and put g(e) = 1.

FIGURE 3

Tree T4 of order 4

s By A S T WL -0 Sy
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Now we need

LEMMA 4. For 2r* + s*> = 1 the function g satisfies the generalized
Folner condition, i.e. there exists a sequence {A,}S2, of finite subsets of Ty
such that

ZUEBA,, 92(,0) R 0
ZveAn gz(v) n—oo .

Proof. Let A, be the subset of vertices of the tree T4 consisting of e
and the vertices lying below e up to the level n (in Figure 3 the vertices of
A, are marked with circles).

One can easily see that

Y Fwy=n+1,
VEA,
> g =2.
VEDA,

Thus {A,}$2, is a generalized Fglner sequence for P corresponding to g. []

rg(v) sg(v) rg(v)

FIGURE 4

Labelling of vertices and the definition of the function g

STEP 2. The second step consists of labelling the vertices of the Cayley
graph of Z,xZ4 with a, b or c (the precise values of the numbers a,b and
¢ are given later). The vertices of each square are labelled as in Figure 4.
This defines the unique labelling if we bear in mind the way we have drawn
the tree T, obtained by contracting the squares (see Figure 3).
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Now we can define the positive function f on Z, %7, as follows. If v is
the vertex of type ¢ (t=a, b or c) of the square which corresponds to the
vertex w of the tree T4 then

f() = tg(w).

We want to find a, b, ¢, r, s and X so that f is an eigenfunction of the
random walk operator P with the eigenvalue A.
Let us write the equation

Pf =X

for vertices of type a, b and c. On a vertex of type a, the function f has
to satisfy the following

b+ 2b
(6) +3 - Aar
2b
(7) crems Aas .
3
For a vertex of type b, function f has to satisfy
(8) arerar _
3
and for a vertex of type c, function f has to satisfy
2b
(9) ;aS:Aa

If f satisfies the above conditions it is an eigenfunction of P with the
eigenvalue A. For 2K + 52 =1, by Lemma 4 the function g satisfies the
generalized Fglner condition and so does f. So we want to have a condition

(10) 2+ =1,

After solving equations (6)-(10) we obtain the following values for a, b, c,

r, s and A (a, b and c are determined up to a constant so we suppose
a=1):

uv 1 —2u? 1 — 2u?
azl, b:———————, c= — -
—1 + 4u? —1 +4u?”’
_ 2
r=u, s=vV1-—2u?; A= L o Ju A ;
3vV1 — 2u?
where
- v33 —1

8
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For the above values, f is an eigenfunction of the operator P and satisfies
the generalized Fglner condition. By Theorem 3 the norm of the random walk
operator on Z, %74 with the generating subset as defined before is then equal
to

V3347
V33 -1

|P|| = ~ 0.98.

4.2.2 GENERAL CASE

The idea presented for Z,xZ, can be used in the general case for Z,*Z,,.
As the solution involves roots of some polynomial of degree nm, we will not
give details.

4.3 MEAN OPERATOR ON THE HYPERBOLIC PLANE

Let us consider the hyperbolic upper half-plane H = {z = x+ iy € C;

\/ dx*+dy?
¥

to the measure puy = 22 . We consider the operator P,
}7

x € R, y > 0} with a Riemannian metric dyz = which gives rise

Pf(z0) = /| l f(2)dmg(2),
z—20|=R

where dmpg is a uniform probability measure on a hyperbolic circle of radius R.
We want to compute the norm of the operator P acting on L*(H,dyz).

First of all let us remark that the function:

(11) (@) = +/Im(z),

is an eigenfunction of P. An easy way to see this is to note that P
commutes with isometries of H and that the isometries consisting of horizontal
translations and homotheties act transitively on H. The effect of these on the
function f is that they just multiply it by a constant.

Now we would like to show that one can find a Fglner sequence with
respect to the function f. Let us consider a sequence {A,}°°, of rectangles
(in the Euclidean sense) in H :

Ay={z€H; e <Im@ <1,0<Re() <n}.

It is easy to see that the measure |0A,| of the boundary of A, is bounded
by the measure of the following set B, (see Figure 5):
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FIGURE 5
Sets A, and B,

B,={z€ H; —R<Re(z) <R, ¥ >Im(zx) > e " "}
Ufz€H; -R+n<Re@<n+R, & >Im@) > e "}
U{z€H; —R<Re(® <n+R, e >Im(z) > e "}
U{z€H; —R<Re(x) <n+R, e "R >1Im(z) > e " "},

One can see that

2

Balp =, |Aplp =n”.

This shows that {A,}°2, is a generalized Fglner sequence. Thus

1P 2t ey — 20 due) = / Vv Im(z) dmg(z) .

|z—i|=R

4.4 WREATH PRODUCTS

Let G and F be finitely generated groups. We define the wreath product
G F of these groups as follows. Elements of GUF are couples (g,vy;) where
g: F — G is a function such that g(v) is different from the identity element
id; of G only for finitely many elements v in F, and where -y, is an element
of F. The multiplication in G ¢ F 1s defined as follows:

(91,71) (92, 72) = (93, 7172)

~ where
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53(7) = g1(Mg(ym1) for vy € F .

If S¢ and Sr are generators of G and F respectively then

{(9,7); (9(F) =idg, v € Sp) or (9(F \ idp) = idg, g(idr) € Sg, v = idp) }

1S a generating subset for G F.

Let 1 and v be symmetric, finitely supported probability measures on F
and G respectively.

As there is a natural embedding of F and G into G F, one can view
the measures ;1 and v as measures on G F. More precisely :

v(g(idp)) if v =idp and g(F \ idr) = idg
v(g,7) = .

0 otherwise,

() it g(F) = idg
(g,y) = :

0 otherwise.

Then p+ v+ p is a symmetric measure on G F. Explicitly we have:

p(y(v0) " Hu(vo)v(g(vo))  if g(F \ ) = idg

* U %k s 1) = |
7 (g, ) { 0 otherwise .

We want to prove:

THEOREM 7. Let F and G be finitely generated groups. If F is amenable
then the spectral radius of v on G is the same as the spectral radius of
pxvxp on GULF.

Proof. We will prove Theorem 7 by constructing on G F a positive
function f which is an eigenfunction for the convolution by p* v x  with
eigenvalue ||v[|z) . and for which there exists a generalized Fglner
sequence.

Let f be a positive eigenfunction for the operator which is a convolution
on /*(G) by v, corresponding to the eigenvalue ||v||, i.e.

(12) frv=|vllf.
We can normalize f so that
(13) flidg) = 1.

By Theorem 3 (and the remark after its proof) there exists a sequence of finite
subsets A, C G, such that
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Z’YE@A” f2 (’Y)
ny €A, f 2 (7)

As the group F is amenable there exists a sequence of finite subsets B, C E,
such that

n—00 0.

#0B,
#B,,

For technical reasons let us choose the sequences B, and A, in such a way
that

n— 00 0.

#0B, _ 1 > con M) 1

#B, n nyeA,,fz(’Y) < n#B,)

(14)

Now, on G F we define ]7 as follows

Flg,m) =[] flan.

YEF

The function f is well defined because by (13), f(g(7y)) is different from 1
only for finitely many v € F. This function is of course positive and does
not depend on <y;. From (12) one has

frpxvxp=frvxp=|v|frxp=|v|f.

To complete the proof of Theorem 7 it 1s enough to construct a generalized
Fglner sequence C, C G F for f. We define C,, as follows:

Cn = {(9771);’71 S Bna g(Bn) C Ana Q‘I(G \ ldG) - Bn} .
LEMMA 5. The sequence C, C GUF is a generalized Folner sequence
for f.
Proof. Let us define sets D, and 0D, as follows:
D, ={g: F — G; g(B,) C Ay, g~'(G\ idg) C B,},
0D, = {g: F — G; there exists vy € B, such that g(y) € 0A,,
9(Bn \ Y0) C Ay, g7'(G\ idg) C By} .
Thus

Cn — Dn, X Bna
acn == (aDn X Bn) U (Dn X aBn)
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We have then

> Fem) = Y (Treon)

(g,7D€EC, (g,v)EC, ~YEF
= Y ([reo) =3 ([Trem)
(9, 71)EDyXB, ~EF g€D, ~EF

On the other hand

> (Few)= Y (Il

(g)’Yl)EaCn (gawl)eacn 'YEF

- > (TLreem)”

(g,7)C(OD, X B, )U(D, xOB,) ~YEF

= %08, 3 ([T o) +#8, 3 ([Trwm)

geD, ~€EF geodD, ~EF

S (flgm)’

B (9,7)€EC,

2
> gcon, \ T erf(gn) ~
n geaD( YEF )2 Z (f(gyﬁ))z
EQEDH (HyeFf(g(’Y))> (9, 7)EC,

#88

But

S (TLraen) =B, Za@% Jf(( )) S (T reem)

geID, ~EF g€D, ~EF

Thus by (14)

~ #OB, 2acon S (@) iz
ST (flew)’ = (#Bn ”Zejrﬁ(a)) ST (flgm)’

(97’)’1)63@ (g”)’l)ecn
2
Z Z (f (9, ’71)
(g,)€Cy
which shows that C, is a generalized Fglner sequence for f []

This ends the proof of Theorem 7.
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