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Proof. There are several proofs of this theorem. In [20] one can find the
proof where the analogue of Perron-Frobenius theory is developed and in [11]
the truncation method is used. L]

3.2 EIGENFUNCTIONS IN [?

One can ask whether the positive eigenfunctions of the random walk
operator are in [*(X,N). The answer is no in the case when X is the Cayley
graph of an infinite group I' (see Theorem 5). But in the general case there
are examples of eigenfunctions which are in /*(X,N) (see Proposition 2).

3.2.1 THE CASE OF GROUPS

THEOREM 5. Let f be a positive eigenfunction of the simple random
walk operator P on the group T" generated by a finite symmetric set S, i.e.
Pf =M. If T is infinite then

> 1) = +oo.

yell

Proof.  Suppose the contrary, i.e. that there is a positive eigenfunction f
of the operator P for which the /* norm is finite:

Pf() = )‘an
Zfoz('y) < Fo00.

yel

The second condition implies that f; is not constant and so there are Yo,v1 € T
such that

Jo(yo) <Jo(m)-
Let us define the function f; as a translation of f, by YoV, L e,
A0 = folyor7 ).
The function f, being the translation of f;, is an eigenfunction of P, i.e.
Pfi = M.
So the function f defined as follows :
o) = max{fy(n, iy},

satisfies

Pf > \f.
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As fy and f; are in [A(I), the function f is in A(I") as well. The functions
fo and f; have the same /* norms and

f1(r) = fo(yo) < foln),

so there exists 7y, € I' such that

Ji(r2) > fo(r2).

Note that these two inequalities imply that f}_ fo with equality at some
points and strict inequality at some other points. Thus g = f— Jfo satisfies
g >0, g # 0, g vanishes at some points and Pg > Ag. Let us prove that this
implies Pf# )\f. Indeed, if we had equality then Pg = \g as well and thus
P'g = A\'g. Taking n large enough makes P"g non-zero at points where ¢
vanishes, a contradiction. We have thus shown that sz )\f with Pf;é )\f.

This means that
1PF oy > A Nl -

Hence

IP|| > A.

But this provides the desired contradiction because by Theorem 4 there
are no positive eigenfunctions of P with an eigenvalue smaller than the norm
of P. [

3.2.2 THE GENERAL CASE

It will be shown that there are examples of the infinite graph X and the
simple random walk operator P for which there is a positive eigénfunction in
I*(X,N). It was pointed out to us by the referee that when P is the adjacency
operator, examples of infinite graphs with positive eigenvalues in /> can be
found for instance in [5] (page 232).

Let X be a uniform tree (i.e. a simply connected graph) of degree 3. By
a theorem of Kesten (see [9]) one knows that ||P|| = 2y/2< 1. Let a and b
be two neighboring vertices in X. Now let X, be a graph which is the same
as the graph X, except that the edge (a,b) 1s subdivided into n vertices. Let
I,, denote the set of vertices a, b and added vertices which we label 1,...,n
(see Figure 1). Let P, be the simple random walk operator on X, . One has
|Pr]l @n—oo 1. In fact we will prove:
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FIGURE 1
The graph X

PROPOSITION 2. For n > 7 one has

i )>2\/§
3 3

Pl > cos(n
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For any ny > 1 such that |Pn|| > 2v/2 the eigenfunctions of Py,

corresponding to the eigenvalue ||P,,|| are in *(X,,,N).

Proof. For n>7 let t = sin(5)/sin(;25) so that 0 <z < 1.

For x € X\ I, let |x| be the minimum of its distances from a and b. We

define the function f, on X, as follows:

! for y € X \ I,
f) = sin(TEY) /sin(-T5) fory=1,...,n
1 for y=a,b.

We verify that

Pofu(i) = cos<n13>fn(i) fori=1,....n

P.f.(x) = (cos 1(’113) +2cos<n:rL

On the other hand for n > 7 we have f < % and

> fn(X)N(X)—2Z2 3 (") 3 < 0.

X€EXu \In

Thus f, is in 2(X,,N) and

s
Py ,1>cos( )n.
Jn 2 n+3f

So we have proved the first part of Proposition 2.

3)>fn(x) for x € X, \ {1,...
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Let ng be such that

2¢/2

HPno le(Xno>N)—*12(XﬂoaN) = g > 3

Now let f be an eigenfunction of the operator P,, with the eigenvalue o, i.e.

P, f =of.
We want to show that f € [>(X,,, N). Suppose this is not true, i.e.
> FENG) = +oo.
XEXn,
By Theorem 2, there exists a sequence of subsets of X,,, Ay C X,, such that
> con SEONG)
> ren AN

As I,, is a fixed finite set, the sequence C; = Ay \ I, is non-empty for k
sufficiently large. We need the following:

3)

—k—o00 0.

LEMMA 3. One has
erack f2(x)N(x)
> e SPEON)

~—“k—o00 0.

Proof. 1f ) .4 F2(X)N(x) —t—oo 00 then the statement of the lemma is
clear. Suppose then that for all k
4) D FONE) < a < oo.

XEAL
If AyNnl,, =2 then Ay and C; coincide. So we are interested only in those
k for which Ay N1, # @. Let us consider the ball Bg of radius R centered
in a €1, (i.e. those vertices in X,, for which at most R edges are needed
to connect them to a).

Because of (3) and (4) we have that for k sufficiently large . 0A;NBgr = &
which, by the fact that Ay N 1,, # @, implies that Bg C A;. But R can be
chosen arbitrarily large and as f is not in *(X,N) we get

> FEONE) =00 00,
xXEA,
which- contradicts (4). This completes the proof of the lemma. []

On the subsets Cj the graphs X and X,, coincide. This implies:

2¢/2

1Pl 2 vy ey = @ >
which yields the desired contradiction. This ends the proof of Proposition 2. []
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