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By Theorem 2, the first condition implies the second one. [

REMARK. The proof of Theorem 3 can easily be generalized to the
case where P is a convolution operator with a finitely supported probability
measure.

3. REMARKS

We will now make some comments about Theorems 2 and 3. We will
state some theorems about the existence of eigenfunctions for the Markov
operator and discuss whether one can take in the generalized Fglner condition
the eigenfunctions to be in L2(X, ).

For simplicity we will suppose that X is a connected, locally finite graph
(i.e. the degree of each vertex is finite) and we consider the simple random
walk going with equal probability from one vertex to any of its neighbors. We
associate with this random walk the simple random walk operator P defined by

Pf(v) = > fw) for fePX,N)

wn~v

N()

where N(v) is the degree of vertex v in X (i.e. the number of edges adjacent
to v), where w ~ v means that w and v are connected by an edge and
where [*(X,N) is the space of real-valued functions f on the vertices of X
such that ) . f*(x)N(x) is finite.

3.1 EXISTENCE OF EIGENFUNCTIONS

THEOREM 4 ([20]). Let X be an infinite, locally finite graph and let P
be the simple random walk operator on I*(X,N). For any X\ > ||P|| there
exists a positive eigenfunction f of P with eigenvalue )\, i.e.

Pf(x) = M(x) and f(x) >0 for xe X .

For )\ < ||P|| there are no positive eigenfunctions of P with eigenvalue .
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Proof. There are several proofs of this theorem. In [20] one can find the
proof where the analogue of Perron-Frobenius theory is developed and in [11]
the truncation method is used. L]

3.2 EIGENFUNCTIONS IN [?

One can ask whether the positive eigenfunctions of the random walk
operator are in [*(X,N). The answer is no in the case when X is the Cayley
graph of an infinite group I' (see Theorem 5). But in the general case there
are examples of eigenfunctions which are in /*(X,N) (see Proposition 2).

3.2.1 THE CASE OF GROUPS

THEOREM 5. Let f be a positive eigenfunction of the simple random
walk operator P on the group T" generated by a finite symmetric set S, i.e.
Pf =M. If T is infinite then

> 1) = +oo.

yell

Proof.  Suppose the contrary, i.e. that there is a positive eigenfunction f
of the operator P for which the /* norm is finite:

Pf() = )‘an
Zfoz('y) < Fo00.
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The second condition implies that f; is not constant and so there are Yo,v1 € T
such that

Jo(yo) <Jo(m)-
Let us define the function f; as a translation of f, by YoV, L e,
A0 = folyor7 ).
The function f, being the translation of f;, is an eigenfunction of P, i.e.
Pfi = M.
So the function f defined as follows :
o) = max{fy(n, iy},

satisfies

Pf > \f.
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