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322 , A. ZUK
Let ||P|| be the operator norm of P acting on *(I'). In [8] Kesten proved:

THEOREM 1 (Kesten). The following conditions are equivalent :
@ [|Plf=1.

(2) The group T' is amenable, i.e. there exists a sequence {A,}52, of finite
subsets of 1" satisfying the Fglner condition.

In the next section we will prove a generalization of this result (Theorems 2
and 3), showing that equalities of the form ||P|| = A, with 0 < A < 1, are
equivalent to appropriate Fglner-like conditions. Section 3 is devoted to some
remarks concerning this generalization. In Section 4 we use the generalized
Fglner condition to compute the norms of some random walk operators and
in Section 5, using the same ideas, we obtain some lower bounds for the
random walk operators on graphs.

After completion of this work, we learned that some versions of a
generalized Fglner condition were obtained recently by S. Popa [12].
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nicki and to L. Saloff-Coste for several interesting discussions and remarks on
the paper, and for suggesting the example in Section 4.4. I also wish to thank
P. de la Harpe and the referee for their several valuable comments on this
paper. This work was done with the support of the Swiss National Science
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2. THE GENERALIZED F@LNER CONDITION

Let us consider a measurable space (X, F). On this space we consider a
Markov transition kernel P(-,-), i.e. for any x € X, P(x,-) is a probability
measure on (X, F) and P(-,A) is a measurable function on (X, F) for every
AcF.

Let u be a o-finite measure on the space (X,F). For any measurable
subset A C X we define its measure |A| and the measure |0A| of its boundary
OA as follows:

|A| = uA),

10A] = / / P(x, dy)dp()
{xeA} J{ycAc}
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We will suppose that the measure
(D dm(x,y) = dp(x)P(x, dy)

is symmetric on X x X. Let P be the Markov operator acting on L*(X, 1) as
= [ 0P d).
{yex}

The above equation defines also an operator on the space of positive measurable
functions on X.

When condition (1) is satisfied we say that P is reversible with respect to
1. The Markov operator P is a self-adjoint operator on L*(X, 1) if and only
if P is reversible with respect to L.

We denote by (-, )12,y the scalar product on L*(X, ) and by ||P|| the
norm of P acting on L*(X, ).

For a real-valued measurable function f and for a measurable subset A C X

let us define a relative measure |A] » and a relative measure of its boundary
|0A |

Al = / frdux),
{x€A}

|0A], = / / O P (x, dy)du(x) .
{rxeA} J{yeAs}

THEOREM 2. Let P be a Markov operator on a measurable space
(X, F), which is reversible with respect to a measure . Let f be a positive

eigenfunction of P with a positive eigenvalue \. Then the following conditions
are equivalent :

(1) There is a constant ¢ > 0 such that for any measurable subset A C X of
finite measure

‘14|f2 S C|8A’f2 )

@) Pl <A

In the case where X is a Cayley graph of a group I' with a finite set of

generators S = $~! like in Part 1, one can give the following formulation of
the above theorem.
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THEOREM 3. Let f be a positive eigenfunction for the simple random
walk operator P on the group T" generated by a finite symmetric set S, with
the eigenvalue )\, i.e.

Pf = ).
The following conditions are equivalent :
@M 1P = A

(2) (Generalized Fglner condition) There exists a sequence {A,}52, of finite
subsets of 1", such that

Z’yEBAnJ(Q('Y) -
Za,gAnfz(’Y) e

0.

REMARK. In case where A = 1 we can take the function f of Theorem 3
to be a constant function. We then obtain Kesten’s theorem (Theorem 1).

There are also examples of amenable groups (see [2]) for which there
exist eigenfunctions of the simple random walk operator corresponding to the
eigenvalue equal to one and which are not constant. The generalized Fglner
condition applies also to them.

Theorem 2 will be deduced from the following proposition.

PROPOSITION 1 ([7,13]). Let Q be a Markov operator on (X, F) which
is reversible with respect to a measure . Assume that there exists a constant
¢ > 0 such that for any measurable subset A C X of finite measure

@) A| < c|oA].

Then

1
IIQ[ILZ(X,M)ﬁLZ(X,M) <1- 75; < 1.

In order to give a clear proof of Proposition 1, we need the following
lemma.

LEMMA 1 ([13]). For a non-negative measurable function f with compact
support in X one has

/ / f() = fDI O, dy)dp(x) = 2/ |0{f > t}|dz.
{xex} J{yex} 0
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Proof.
/ / f ) — fO]QOCx, dy)dju(x)
{xex} J{yveX}

2 / / (f(x) — f)QO(x, dy)di(x)
{xex} J {yeXf(0)>f0)}

2 |ty 000, ddo
{xeX} J {yeXf®)>f} 40

2 / / / 1110y £y (DO (x, dy)d p(x)dt
0 {xeX} J {HyeXif)>f}

2 / ( / / o(x, dy)du(X))dt
0 {xeXf()>1} J {preXyf()<r}

:z/wmg>@ua =

I

|

Proof of Proposition 1. Let us consider a real-valued measurable function
f with compact support in X. The above lemma applied to the function f?
and the strong isoperimetry condition (2) gives:

/ / F2(0) — £2 ()| Ox, dy)du(x) = 2/ |0{f* > t}|dr
{xex} J{yex} 0

2 o0 ? 2
z—/in>Mm:—/ﬂ®W®-
C Jo ¢ Jx

On the other hand
/ / 720 — f2 () | Q(x, dy)d ()
{xex} J{yex}

< / / ) — FOIWF @] + [F0)DOG, dy)dya(x)
{xeX} J{yeX}

2 / / F(x) = fFO|If ()| Q(x, dy)du(x)
{xex} J{vex}

2 [ (] @ —soleea) widu
{xex} *J{yex}

IN

2 [ (] o —roFema) foldue
{xeX} " {yeXx}

2 — fO[*0(x, dy)d : / 2 3
(‘/{x@(} /{yex} f(x) = fO)]"Q(x, dy) ,u(x)> ( - f(x)] du(x))

2\/§<(1 - Q)faf >L%2(X,M)|Lf”L3(X,,u) )

IA

I
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Hence |
<(1 — Q)f»f >L2(X,,u) > E“f”]}(x,u)'

As Q is a self-adjoint operator, this is equivalent to

1
|IQ”L2(X),U/)“—>L2(X,/J/) S 1— \_/Ez < 1. D

Let P be a Markov operator, reversible with respect to the measure p.
Let f be a positive eigenfunction of P for the eigenvalue .

LEMMA 2. The operator defined by the kernel
Q(x, dy) = A7 f ()~ P(x, dy)f )

is a Markov operator and is reversible with respect to the measure .

Proof. The kernel Q(x,dy) is a Markov transition kernel, because :

[ owman =2 [ peanio) =3 @ = 1.
{yex}

{yex}

In order to prove reversibility of O, we have to prove that the measure
dm'(x,y) = f*(0)dp(0)Q(x, dy)
is symmetric on X X X, knowing that the measure
dm(x,y) = dp(x)P(x, dy)

is symmetric on X X X.

This follows from the following equalities, where B is a measurable subset
of X xX:

/B i (x,y) = /B P00, dy)
e /B FEdpPC, dyf ()
- /B FFG)dm(, )
=" /B FEf ¢)dm(y, x)

=/dm’(y,x). ]
B
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Proof of Theorem 2. Clearly, condition (2) in Theorem 2 implies condition
(1). In order to prove the converse let us consider the Markov operator Q
defined in the previous lemma and the measure f?u on X. Here we add to
the notation for |A| and |OA| an index (Q,f*u) in order to distinguish when
these notions are used for (P, i) or for (Q,f?u). One has

A@ = [ fau = Al
{x€A}

9A[ @1 =/ / WP O W)
{xea} J {yeac}

1
—5 [ rwrere andu = 104
{xeA} J{yeAc}

The first condition implies that there exists ¢/ > 0 such that

2
C/{({?A!(Q’f2m > 'A|(Q,f M))
which by Proposition 1 implies that

1Cl2ex, 2y 22, 20y < 1-

Let p = [Qll2x 2y —12x, 2, - For any g € L2(X, ) :

g g g g
(P9, 9)12x.0) :A<Q (J;) ’f> < Ap <J‘;>]7>
L2(X, f ) L2(X, f? )
= A9 D2 ) -

As P 1s a self-adjoint operator and p < 1, this implies

”P”LZ(X,N)—»[}(X,M) <A, O

Proof of Theorem 3. One knows (see Section 3) that P has positive
eigenfunctions only for the eigenvalues greater than or equal to |P||. So the
second condition implies the first one.

In order to prove the converse, we remark that for v~ €T one has:

1 / /
S50 ST S M,

1
P(fY)r)/): ES,
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This implies that

1
#_S|A|f2 = Zfz(’Y) )

yEA
1
SsE Al < D P < Moal.
YEOA

By Theorem 2, the first condition implies the second one. [

REMARK. The proof of Theorem 3 can easily be generalized to the
case where P is a convolution operator with a finitely supported probability
measure.

3. REMARKS

We will now make some comments about Theorems 2 and 3. We will
state some theorems about the existence of eigenfunctions for the Markov
operator and discuss whether one can take in the generalized Fglner condition
the eigenfunctions to be in L2(X, ).

For simplicity we will suppose that X is a connected, locally finite graph
(i.e. the degree of each vertex is finite) and we consider the simple random
walk going with equal probability from one vertex to any of its neighbors. We
associate with this random walk the simple random walk operator P defined by

Pf(v) = > fw) for fePX,N)

wn~v

N()

where N(v) is the degree of vertex v in X (i.e. the number of edges adjacent
to v), where w ~ v means that w and v are connected by an edge and
where [*(X,N) is the space of real-valued functions f on the vertices of X
such that ) . f*(x)N(x) is finite.

3.1 EXISTENCE OF EIGENFUNCTIONS

THEOREM 4 ([20]). Let X be an infinite, locally finite graph and let P
be the simple random walk operator on I*(X,N). For any X\ > ||P|| there
exists a positive eigenfunction f of P with eigenvalue )\, i.e.

Pf(x) = M(x) and f(x) >0 for xe X .

For )\ < ||P|| there are no positive eigenfunctions of P with eigenvalue .
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