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A GENERALIZED F@LNER CONDITION
AND THE NORMS OF RANDOM WALK OPERATORS ON GROUPS

by Andrzej ZUK

ABSTRACT. We prove a generalized Fglner condition. We present a method of
computing and estimating the norms of random walk operators on groups and grapbs.
We give explicit computations in several cases.

1. INTRODUCTION

Let us consider a pair (I',S), where I' is a finitely generated group and
S is a finite, symmetric set of generators (symmetric means S = S71).
For a finite subset A C I we define its boundary

OA = {v € A; there exists s € S such that ys ¢ A} .

A Fylner sequence is a sequence {A,}°2, of finite subsets of T such that
the cardinality of the boundary 0A, of the set A, divided by the cardinality
of A, tends to zero, i.e.

#0A,
: n— 00 O o
#A,
Fglner proved in [4] that the existence of such a sequence is equivalent to
amenability of the group I'.

One can associate with the pair (T',S) the simple random walk operator
P: P() — (D)

1
PIOY) = o< D _f(ys) for f e P(T).

SES
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Let ||P|| be the operator norm of P acting on *(I'). In [8] Kesten proved:

THEOREM 1 (Kesten). The following conditions are equivalent :
@ [|Plf=1.

(2) The group T' is amenable, i.e. there exists a sequence {A,}52, of finite
subsets of 1" satisfying the Fglner condition.

In the next section we will prove a generalization of this result (Theorems 2
and 3), showing that equalities of the form ||P|| = A, with 0 < A < 1, are
equivalent to appropriate Fglner-like conditions. Section 3 is devoted to some
remarks concerning this generalization. In Section 4 we use the generalized
Fglner condition to compute the norms of some random walk operators and
in Section 5, using the same ideas, we obtain some lower bounds for the
random walk operators on graphs.

After completion of this work, we learned that some versions of a
generalized Fglner condition were obtained recently by S. Popa [12].

ACKNOWLEDGEMENTS. I would like to express my gratitude to A. Hula-
nicki and to L. Saloff-Coste for several interesting discussions and remarks on
the paper, and for suggesting the example in Section 4.4. I also wish to thank
P. de la Harpe and the referee for their several valuable comments on this
paper. This work was done with the support of the Swiss National Science
Foundation.

2. THE GENERALIZED F@LNER CONDITION

Let us consider a measurable space (X, F). On this space we consider a
Markov transition kernel P(-,-), i.e. for any x € X, P(x,-) is a probability
measure on (X, F) and P(-,A) is a measurable function on (X, F) for every
AcF.

Let u be a o-finite measure on the space (X,F). For any measurable
subset A C X we define its measure |A| and the measure |0A| of its boundary
OA as follows:

|A| = uA),

10A] = / / P(x, dy)dp()
{xeA} J{ycAc}
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We will suppose that the measure
(D dm(x,y) = dp(x)P(x, dy)

is symmetric on X x X. Let P be the Markov operator acting on L*(X, 1) as
= [ 0P d).
{yex}

The above equation defines also an operator on the space of positive measurable
functions on X.

When condition (1) is satisfied we say that P is reversible with respect to
1. The Markov operator P is a self-adjoint operator on L*(X, 1) if and only
if P is reversible with respect to L.

We denote by (-, )12,y the scalar product on L*(X, ) and by ||P|| the
norm of P acting on L*(X, ).

For a real-valued measurable function f and for a measurable subset A C X

let us define a relative measure |A] » and a relative measure of its boundary
|0A |

Al = / frdux),
{x€A}

|0A], = / / O P (x, dy)du(x) .
{rxeA} J{yeAs}

THEOREM 2. Let P be a Markov operator on a measurable space
(X, F), which is reversible with respect to a measure . Let f be a positive

eigenfunction of P with a positive eigenvalue \. Then the following conditions
are equivalent :

(1) There is a constant ¢ > 0 such that for any measurable subset A C X of
finite measure

‘14|f2 S C|8A’f2 )

@) Pl <A

In the case where X is a Cayley graph of a group I' with a finite set of

generators S = $~! like in Part 1, one can give the following formulation of
the above theorem.
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THEOREM 3. Let f be a positive eigenfunction for the simple random
walk operator P on the group T" generated by a finite symmetric set S, with
the eigenvalue )\, i.e.

Pf = ).
The following conditions are equivalent :
@M 1P = A

(2) (Generalized Fglner condition) There exists a sequence {A,}52, of finite
subsets of 1", such that

Z’yEBAnJ(Q('Y) -
Za,gAnfz(’Y) e

0.

REMARK. In case where A = 1 we can take the function f of Theorem 3
to be a constant function. We then obtain Kesten’s theorem (Theorem 1).

There are also examples of amenable groups (see [2]) for which there
exist eigenfunctions of the simple random walk operator corresponding to the
eigenvalue equal to one and which are not constant. The generalized Fglner
condition applies also to them.

Theorem 2 will be deduced from the following proposition.

PROPOSITION 1 ([7,13]). Let Q be a Markov operator on (X, F) which
is reversible with respect to a measure . Assume that there exists a constant
¢ > 0 such that for any measurable subset A C X of finite measure

@) A| < c|oA].

Then

1
IIQ[ILZ(X,M)ﬁLZ(X,M) <1- 75; < 1.

In order to give a clear proof of Proposition 1, we need the following
lemma.

LEMMA 1 ([13]). For a non-negative measurable function f with compact
support in X one has

/ / f() = fDI O, dy)dp(x) = 2/ |0{f > t}|dz.
{xex} J{yex} 0
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Proof.
/ / f ) — fO]QOCx, dy)dju(x)
{xex} J{yveX}

2 / / (f(x) — f)QO(x, dy)di(x)
{xex} J {yeXf(0)>f0)}

2 |ty 000, ddo
{xeX} J {yeXf®)>f} 40

2 / / / 1110y £y (DO (x, dy)d p(x)dt
0 {xeX} J {HyeXif)>f}

2 / ( / / o(x, dy)du(X))dt
0 {xeXf()>1} J {preXyf()<r}

:z/wmg>@ua =

I

|

Proof of Proposition 1. Let us consider a real-valued measurable function
f with compact support in X. The above lemma applied to the function f?
and the strong isoperimetry condition (2) gives:

/ / F2(0) — £2 ()| Ox, dy)du(x) = 2/ |0{f* > t}|dr
{xex} J{yex} 0

2 o0 ? 2
z—/in>Mm:—/ﬂ®W®-
C Jo ¢ Jx

On the other hand
/ / 720 — f2 () | Q(x, dy)d ()
{xex} J{yex}

< / / ) — FOIWF @] + [F0)DOG, dy)dya(x)
{xeX} J{yeX}

2 / / F(x) = fFO|If ()| Q(x, dy)du(x)
{xex} J{vex}

2 [ (] @ —soleea) widu
{xex} *J{yex}

IN

2 [ (] o —roFema) foldue
{xeX} " {yeXx}

2 — fO[*0(x, dy)d : / 2 3
(‘/{x@(} /{yex} f(x) = fO)]"Q(x, dy) ,u(x)> ( - f(x)] du(x))

2\/§<(1 - Q)faf >L%2(X,M)|Lf”L3(X,,u) )

IA

I
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Hence |
<(1 — Q)f»f >L2(X,,u) > E“f”]}(x,u)'

As Q is a self-adjoint operator, this is equivalent to

1
|IQ”L2(X),U/)“—>L2(X,/J/) S 1— \_/Ez < 1. D

Let P be a Markov operator, reversible with respect to the measure p.
Let f be a positive eigenfunction of P for the eigenvalue .

LEMMA 2. The operator defined by the kernel
Q(x, dy) = A7 f ()~ P(x, dy)f )

is a Markov operator and is reversible with respect to the measure .

Proof. The kernel Q(x,dy) is a Markov transition kernel, because :

[ owman =2 [ peanio) =3 @ = 1.
{yex}

{yex}

In order to prove reversibility of O, we have to prove that the measure
dm'(x,y) = f*(0)dp(0)Q(x, dy)
is symmetric on X X X, knowing that the measure
dm(x,y) = dp(x)P(x, dy)

is symmetric on X X X.

This follows from the following equalities, where B is a measurable subset
of X xX:

/B i (x,y) = /B P00, dy)
e /B FEdpPC, dyf ()
- /B FFG)dm(, )
=" /B FEf ¢)dm(y, x)

=/dm’(y,x). ]
B
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Proof of Theorem 2. Clearly, condition (2) in Theorem 2 implies condition
(1). In order to prove the converse let us consider the Markov operator Q
defined in the previous lemma and the measure f?u on X. Here we add to
the notation for |A| and |OA| an index (Q,f*u) in order to distinguish when
these notions are used for (P, i) or for (Q,f?u). One has

A@ = [ fau = Al
{x€A}

9A[ @1 =/ / WP O W)
{xea} J {yeac}

1
—5 [ rwrere andu = 104
{xeA} J{yeAc}

The first condition implies that there exists ¢/ > 0 such that

2
C/{({?A!(Q’f2m > 'A|(Q,f M))
which by Proposition 1 implies that

1Cl2ex, 2y 22, 20y < 1-

Let p = [Qll2x 2y —12x, 2, - For any g € L2(X, ) :

g g g g
(P9, 9)12x.0) :A<Q (J;) ’f> < Ap <J‘;>]7>
L2(X, f ) L2(X, f? )
= A9 D2 ) -

As P 1s a self-adjoint operator and p < 1, this implies

”P”LZ(X,N)—»[}(X,M) <A, O

Proof of Theorem 3. One knows (see Section 3) that P has positive
eigenfunctions only for the eigenvalues greater than or equal to |P||. So the
second condition implies the first one.

In order to prove the converse, we remark that for v~ €T one has:

1 / /
S50 ST S M,

1
P(fY)r)/): ES,
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This implies that

1
#_S|A|f2 = Zfz(’Y) )

yEA
1
SsE Al < D P < Moal.
YEOA

By Theorem 2, the first condition implies the second one. [

REMARK. The proof of Theorem 3 can easily be generalized to the
case where P is a convolution operator with a finitely supported probability
measure.

3. REMARKS

We will now make some comments about Theorems 2 and 3. We will
state some theorems about the existence of eigenfunctions for the Markov
operator and discuss whether one can take in the generalized Fglner condition
the eigenfunctions to be in L2(X, ).

For simplicity we will suppose that X is a connected, locally finite graph
(i.e. the degree of each vertex is finite) and we consider the simple random
walk going with equal probability from one vertex to any of its neighbors. We
associate with this random walk the simple random walk operator P defined by

Pf(v) = > fw) for fePX,N)

wn~v

N()

where N(v) is the degree of vertex v in X (i.e. the number of edges adjacent
to v), where w ~ v means that w and v are connected by an edge and
where [*(X,N) is the space of real-valued functions f on the vertices of X
such that ) . f*(x)N(x) is finite.

3.1 EXISTENCE OF EIGENFUNCTIONS

THEOREM 4 ([20]). Let X be an infinite, locally finite graph and let P
be the simple random walk operator on I*(X,N). For any X\ > ||P|| there
exists a positive eigenfunction f of P with eigenvalue )\, i.e.

Pf(x) = M(x) and f(x) >0 for xe X .

For )\ < ||P|| there are no positive eigenfunctions of P with eigenvalue .




A GENERALIZED F@LNER CONDITION 329

Proof. There are several proofs of this theorem. In [20] one can find the
proof where the analogue of Perron-Frobenius theory is developed and in [11]
the truncation method is used. L]

3.2 EIGENFUNCTIONS IN [?

One can ask whether the positive eigenfunctions of the random walk
operator are in [*(X,N). The answer is no in the case when X is the Cayley
graph of an infinite group I' (see Theorem 5). But in the general case there
are examples of eigenfunctions which are in /*(X,N) (see Proposition 2).

3.2.1 THE CASE OF GROUPS

THEOREM 5. Let f be a positive eigenfunction of the simple random
walk operator P on the group T" generated by a finite symmetric set S, i.e.
Pf =M. If T is infinite then

> 1) = +oo.

yell

Proof.  Suppose the contrary, i.e. that there is a positive eigenfunction f
of the operator P for which the /* norm is finite:

Pf() = )‘an
Zfoz('y) < Fo00.

yel

The second condition implies that f; is not constant and so there are Yo,v1 € T
such that

Jo(yo) <Jo(m)-
Let us define the function f; as a translation of f, by YoV, L e,
A0 = folyor7 ).
The function f, being the translation of f;, is an eigenfunction of P, i.e.
Pfi = M.
So the function f defined as follows :
o) = max{fy(n, iy},

satisfies

Pf > \f.
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As fy and f; are in [A(I), the function f is in A(I") as well. The functions
fo and f; have the same /* norms and

f1(r) = fo(yo) < foln),

so there exists 7y, € I' such that

Ji(r2) > fo(r2).

Note that these two inequalities imply that f}_ fo with equality at some
points and strict inequality at some other points. Thus g = f— Jfo satisfies
g >0, g # 0, g vanishes at some points and Pg > Ag. Let us prove that this
implies Pf# )\f. Indeed, if we had equality then Pg = \g as well and thus
P'g = A\'g. Taking n large enough makes P"g non-zero at points where ¢
vanishes, a contradiction. We have thus shown that sz )\f with Pf;é )\f.

This means that
1PF oy > A Nl -

Hence

IP|| > A.

But this provides the desired contradiction because by Theorem 4 there
are no positive eigenfunctions of P with an eigenvalue smaller than the norm
of P. [

3.2.2 THE GENERAL CASE

It will be shown that there are examples of the infinite graph X and the
simple random walk operator P for which there is a positive eigénfunction in
I*(X,N). It was pointed out to us by the referee that when P is the adjacency
operator, examples of infinite graphs with positive eigenvalues in /> can be
found for instance in [5] (page 232).

Let X be a uniform tree (i.e. a simply connected graph) of degree 3. By
a theorem of Kesten (see [9]) one knows that ||P|| = 2y/2< 1. Let a and b
be two neighboring vertices in X. Now let X, be a graph which is the same
as the graph X, except that the edge (a,b) 1s subdivided into n vertices. Let
I,, denote the set of vertices a, b and added vertices which we label 1,...,n
(see Figure 1). Let P, be the simple random walk operator on X, . One has
|Pr]l @n—oo 1. In fact we will prove:
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FIGURE 1
The graph X

PROPOSITION 2. For n > 7 one has

i )>2\/§
3 3

Pl > cos(n

331

For any ny > 1 such that |Pn|| > 2v/2 the eigenfunctions of Py,

corresponding to the eigenvalue ||P,,|| are in *(X,,,N).

Proof. For n>7 let t = sin(5)/sin(;25) so that 0 <z < 1.

For x € X\ I, let |x| be the minimum of its distances from a and b. We

define the function f, on X, as follows:

! for y € X \ I,
f) = sin(TEY) /sin(-T5) fory=1,...,n
1 for y=a,b.

We verify that

Pofu(i) = cos<n13>fn(i) fori=1,....n

P.f.(x) = (cos 1(’113) +2cos<n:rL

On the other hand for n > 7 we have f < % and

> fn(X)N(X)—2Z2 3 (") 3 < 0.

X€EXu \In

Thus f, is in 2(X,,N) and

s
Py ,1>cos( )n.
Jn 2 n+3f

So we have proved the first part of Proposition 2.

3)>fn(x) for x € X, \ {1,...
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Let ng be such that

2¢/2

HPno le(Xno>N)—*12(XﬂoaN) = g > 3

Now let f be an eigenfunction of the operator P,, with the eigenvalue o, i.e.

P, f =of.
We want to show that f € [>(X,,, N). Suppose this is not true, i.e.
> FENG) = +oo.
XEXn,
By Theorem 2, there exists a sequence of subsets of X,,, Ay C X,, such that
> con SEONG)
> ren AN

As I,, is a fixed finite set, the sequence C; = Ay \ I, is non-empty for k
sufficiently large. We need the following:

3)

—k—o00 0.

LEMMA 3. One has
erack f2(x)N(x)
> e SPEON)

~—“k—o00 0.

Proof. 1f ) .4 F2(X)N(x) —t—oo 00 then the statement of the lemma is
clear. Suppose then that for all k
4) D FONE) < a < oo.

XEAL
If AyNnl,, =2 then Ay and C; coincide. So we are interested only in those
k for which Ay N1, # @. Let us consider the ball Bg of radius R centered
in a €1, (i.e. those vertices in X,, for which at most R edges are needed
to connect them to a).

Because of (3) and (4) we have that for k sufficiently large . 0A;NBgr = &
which, by the fact that Ay N 1,, # @, implies that Bg C A;. But R can be
chosen arbitrarily large and as f is not in *(X,N) we get

> FEONE) =00 00,
xXEA,
which- contradicts (4). This completes the proof of the lemma. []

On the subsets Cj the graphs X and X,, coincide. This implies:

2¢/2

1Pl 2 vy ey = @ >
which yields the desired contradiction. This ends the proof of Proposition 2. []
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4. NORMS OF RANDOM WALK OPERATORS

Now we will show how Theorem 3 can be used in the problem of computing
the norm of the random walk operator P on some groups. Our strategy is as
follows: we want to find a positive eigenfunction for the operator P which
satisfies the generalized Fglner condition. By Theorem 3 such an eigenfunction
always exists and the eigenvalue corresponding to this eigenfunction is equal
to the norm of the operator P. Theorem 3 is a particular case of Theorem 2
which can also be helpful in computing the norms of more general operators
as shown in Section 4.3.

4.1 FREE GROUPS

First of all, as a simple illustration of this method, we will compute the
norm of the simple random walk operator on free groups, which was first
done by Kesten (see [9]) using a different method.

THEOREM 6 (Kesten). Let I' be the free group generated by the standard
symmetric set of generators S. The norm of the simple random walk operator
P associated to (I',S) is equal to

2VHS — 1
1P|l = s

Proof.  The Cayley graph of (I',S) is a homogeneous tree T} of degree
k =#S. We draw the tree T; with level lines as in Figure 3 (level lines are
marked by dotted lines). Let us choose arbitrarily a line as the line of level
0. We construct a function on vertices of this tree which depends only on the
level of the vertex. For a vertex v € Ty we denote by |v]| its level. We define

/T — R4 as follows
1 |v]
V) = :
= (=)

One has

Let A, be the set of vertices in 7} consisting of a chosen vertex e from the

level 0 and the vertices lying below e up to the level n (in Figure 3 the
vertices of A, are marked with circles). Then
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Y fwy=n+1,
VEA,

> Ay =2.
vEDA,

This shows that {4,}22, is a generalized Fglner sequence and by Theorem 3

2vVk —1

Pl ==

L]

4.1.1 REMARKS ON GENERALIZED GROWTH

Let I" be a group generated by a finite, symmetric set S. For id # v €T’
we define its length |v| as the minimal number of generators from S needed
to represent -y, i.e.

|v| = min{n; v=s; ...s;,, s;, €S},

and we declare |id| = 0.

The growth function (see [10], [18]) of the pair (I',S) associates to each
integer n > 0 the number B(I',S)(n) of elements v € T" such that |y| < n,
1.e.

BT, S)n) = #{y €T || < n}.

One is often interested only in the type of the growth function. For instance,
we say that the group I' is of polynomial growth if there exist constants ¢
and D such that

¢~ 'nP < BT, S)(n) < cn®.

The exponent D does not depend on the set of generators §. If the growth
function is bounded by a polynomial, it is known (see [6]) that I" is of
polynomial growth and D is an integer. For a group of polynomial growth
with the exponent D, it is known (see [19]) that there exists a constant c
such that

D
2

(5) ¢t < Pid id) < cn™

?

where P?*(id,id) is the probability of the return to the identity element of
the simple random walk after 2n steps.

It seems natural to define a generalized growth function, using an
eigenfunction of P. Let f be a positive eigenfunction of P corresponding to
the eigenvalue equal to the norm of P, i.e.

Pf = ||P[If .
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The generalized growth function B(T,S,f) associates to each positive
integer n the number

BTSN = >, fo,

y€eT,|v|<n

i.e., each element in the ball of radius » is counted with weight f2.

Let us compute the generalized growth function in a particular case. Let
P be the simple random walk operator on the free group with the standard
set of generators of cardinality k£ as in Section 4.1. Let g be the unique
radial eigenfunction of P corresponding to the eigenvalue ||P|| and such that
g(id) = 1. Explicitly we have:

g(y) = <Tlvl+1> ( k_1> :

Then we have

Y Fy=

vel,|v|<n
k2 — 4k 1+ 4 3k — 8k + 4 Tk* — 16k + 4
3 2
- - 1
" < 3k2 — 3k >+” < 2k2 — 2k & 6k? — 6k T

This shows that the generalized growth is like »n°. In particular the sequence
of balls is a generalized Fglner sequence.

By analogy to (5) we conjecture that the fact that the generalized growth

function for the free groups is like n® explains that for the free groups one
has (see [16]):

3
I < P(id, id) < )3

where ¢ is a constant and )\ is the norm of P.

4.2 FREE PRODUCTS OF FINITE GROUPS

Random walks on free products of finite groups were already considered
in [1], [3], [17] and [21].
Let us consider the group Z,, x Z, with the following generating set:
o if m#2 we take {£1} as generators of Z, = {0,1,...,m — 1};
* we take {1} as a generator of Z, = {0, 1}.
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In Figure 2 we represent the Cayley graph for Z, xZ, with the above set
of generators. In general the Cayley graph for Z,, x Z, with the generating
set defined above has the following construction:

e m-gons and n-gons are attached to each other;

e at each vertex of an n-gon there is one m-gon attached and at each vertex
of an m-gon there is one n-gon attached.

4.2.1 Zp+24

We will present our method in the special case for Z, x Z4. The Cayley
graph for this group is represented in Figure 2. Our aim is to construct the
eigenfunction f of the random walk operator satisfying the generalized Fglner
condition. By Theorem 3, the eigenvalue corresponding to this eigenfunction
is equal to the norm of a random walk operator. We will construct f in two
steps.

FIGURE 2
Cayley graph for Zy x Z4
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STEP 1. If we contract the squares to points, the Cayley graph for Zo*Zy4
is deformed to the homogeneous tree T, of order 4 (each vertex has 4
neighbors), which is represented in Figure 3. First of all we construct a
function on vertices of 7 satisfying the generalized Fglner condition.

We draw the graph 74 as in Figure 3, i.e. with one point set apart at
infinity. The level lines or horocycles are marked by dotted lines. Each vertex
of 74 has one neighbor above and three neighbors below.

Let us fix two positive numbers r, s and define the positive function g
on the vertices of the tree Ty

g: (vertices of 7y) — R
as follows:
if w is a neighbor of v lying below v then (see Figure 4)
(1) glw) = rg(v) if w is the right or left neighbor;
(2) g(w) = sg(v) if w is the middle neighbor.

The above defines the function g up to a constant. Let us fix one vertex
e (for instance lying on the horocycle of level 0) and put g(e) = 1.

FIGURE 3

Tree T4 of order 4

s By A S T WL -0 Sy
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Now we need

LEMMA 4. For 2r* + s*> = 1 the function g satisfies the generalized
Folner condition, i.e. there exists a sequence {A,}S2, of finite subsets of Ty
such that

ZUEBA,, 92(,0) R 0
ZveAn gz(v) n—oo .

Proof. Let A, be the subset of vertices of the tree T4 consisting of e
and the vertices lying below e up to the level n (in Figure 3 the vertices of
A, are marked with circles).

One can easily see that

Y Fwy=n+1,
VEA,
> g =2.
VEDA,

Thus {A,}$2, is a generalized Fglner sequence for P corresponding to g. []

rg(v) sg(v) rg(v)

FIGURE 4

Labelling of vertices and the definition of the function g

STEP 2. The second step consists of labelling the vertices of the Cayley
graph of Z,xZ4 with a, b or c (the precise values of the numbers a,b and
¢ are given later). The vertices of each square are labelled as in Figure 4.
This defines the unique labelling if we bear in mind the way we have drawn
the tree T, obtained by contracting the squares (see Figure 3).
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Now we can define the positive function f on Z, %7, as follows. If v is
the vertex of type ¢ (t=a, b or c) of the square which corresponds to the
vertex w of the tree T4 then

f() = tg(w).

We want to find a, b, ¢, r, s and X so that f is an eigenfunction of the
random walk operator P with the eigenvalue A.
Let us write the equation

Pf =X

for vertices of type a, b and c. On a vertex of type a, the function f has
to satisfy the following

b+ 2b
(6) +3 - Aar
2b
(7) crems Aas .
3
For a vertex of type b, function f has to satisfy
(8) arerar _
3
and for a vertex of type c, function f has to satisfy
2b
(9) ;aS:Aa

If f satisfies the above conditions it is an eigenfunction of P with the
eigenvalue A. For 2K + 52 =1, by Lemma 4 the function g satisfies the
generalized Fglner condition and so does f. So we want to have a condition

(10) 2+ =1,

After solving equations (6)-(10) we obtain the following values for a, b, c,

r, s and A (a, b and c are determined up to a constant so we suppose
a=1):

uv 1 —2u? 1 — 2u?
azl, b:———————, c= — -
—1 + 4u? —1 +4u?”’
_ 2
r=u, s=vV1-—2u?; A= L o Ju A ;
3vV1 — 2u?
where
- v33 —1

8
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For the above values, f is an eigenfunction of the operator P and satisfies
the generalized Fglner condition. By Theorem 3 the norm of the random walk
operator on Z, %74 with the generating subset as defined before is then equal
to

V3347
V33 -1

|P|| = ~ 0.98.

4.2.2 GENERAL CASE

The idea presented for Z,xZ, can be used in the general case for Z,*Z,,.
As the solution involves roots of some polynomial of degree nm, we will not
give details.

4.3 MEAN OPERATOR ON THE HYPERBOLIC PLANE

Let us consider the hyperbolic upper half-plane H = {z = x+ iy € C;

\/ dx*+dy?
¥

to the measure puy = 22 . We consider the operator P,
}7

x € R, y > 0} with a Riemannian metric dyz = which gives rise

Pf(z0) = /| l f(2)dmg(2),
z—20|=R

where dmpg is a uniform probability measure on a hyperbolic circle of radius R.
We want to compute the norm of the operator P acting on L*(H,dyz).

First of all let us remark that the function:

(11) (@) = +/Im(z),

is an eigenfunction of P. An easy way to see this is to note that P
commutes with isometries of H and that the isometries consisting of horizontal
translations and homotheties act transitively on H. The effect of these on the
function f is that they just multiply it by a constant.

Now we would like to show that one can find a Fglner sequence with
respect to the function f. Let us consider a sequence {A,}°°, of rectangles
(in the Euclidean sense) in H :

Ay={z€H; e <Im@ <1,0<Re() <n}.

It is easy to see that the measure |0A,| of the boundary of A, is bounded
by the measure of the following set B, (see Figure 5):
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FIGURE 5
Sets A, and B,

B,={z€ H; —R<Re(z) <R, ¥ >Im(zx) > e " "}
Ufz€H; -R+n<Re@<n+R, & >Im@) > e "}
U{z€H; —R<Re(® <n+R, e >Im(z) > e "}
U{z€H; —R<Re(x) <n+R, e "R >1Im(z) > e " "},

One can see that

2

Balp =, |Aplp =n”.

This shows that {A,}°2, is a generalized Fglner sequence. Thus

1P 2t ey — 20 due) = / Vv Im(z) dmg(z) .

|z—i|=R

4.4 WREATH PRODUCTS

Let G and F be finitely generated groups. We define the wreath product
G F of these groups as follows. Elements of GUF are couples (g,vy;) where
g: F — G is a function such that g(v) is different from the identity element
id; of G only for finitely many elements v in F, and where -y, is an element
of F. The multiplication in G ¢ F 1s defined as follows:

(91,71) (92, 72) = (93, 7172)

~ where
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53(7) = g1(Mg(ym1) for vy € F .

If S¢ and Sr are generators of G and F respectively then

{(9,7); (9(F) =idg, v € Sp) or (9(F \ idp) = idg, g(idr) € Sg, v = idp) }

1S a generating subset for G F.

Let 1 and v be symmetric, finitely supported probability measures on F
and G respectively.

As there is a natural embedding of F and G into G F, one can view
the measures ;1 and v as measures on G F. More precisely :

v(g(idp)) if v =idp and g(F \ idr) = idg
v(g,7) = .

0 otherwise,

() it g(F) = idg
(g,y) = :

0 otherwise.

Then p+ v+ p is a symmetric measure on G F. Explicitly we have:

p(y(v0) " Hu(vo)v(g(vo))  if g(F \ ) = idg

* U %k s 1) = |
7 (g, ) { 0 otherwise .

We want to prove:

THEOREM 7. Let F and G be finitely generated groups. If F is amenable
then the spectral radius of v on G is the same as the spectral radius of
pxvxp on GULF.

Proof. We will prove Theorem 7 by constructing on G F a positive
function f which is an eigenfunction for the convolution by p* v x  with
eigenvalue ||v[|z) . and for which there exists a generalized Fglner
sequence.

Let f be a positive eigenfunction for the operator which is a convolution
on /*(G) by v, corresponding to the eigenvalue ||v||, i.e.

(12) frv=|vllf.
We can normalize f so that
(13) flidg) = 1.

By Theorem 3 (and the remark after its proof) there exists a sequence of finite
subsets A, C G, such that
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Z’YE@A” f2 (’Y)
ny €A, f 2 (7)

As the group F is amenable there exists a sequence of finite subsets B, C E,
such that

n—00 0.

#0B,
#B,,

For technical reasons let us choose the sequences B, and A, in such a way
that

n— 00 0.

#0B, _ 1 > con M) 1

#B, n nyeA,,fz(’Y) < n#B,)

(14)

Now, on G F we define ]7 as follows

Flg,m) =[] flan.

YEF

The function f is well defined because by (13), f(g(7y)) is different from 1
only for finitely many v € F. This function is of course positive and does
not depend on <y;. From (12) one has

frpxvxp=frvxp=|v|frxp=|v|f.

To complete the proof of Theorem 7 it 1s enough to construct a generalized
Fglner sequence C, C G F for f. We define C,, as follows:

Cn = {(9771);’71 S Bna g(Bn) C Ana Q‘I(G \ ldG) - Bn} .
LEMMA 5. The sequence C, C GUF is a generalized Folner sequence
for f.
Proof. Let us define sets D, and 0D, as follows:
D, ={g: F — G; g(B,) C Ay, g~'(G\ idg) C B,},
0D, = {g: F — G; there exists vy € B, such that g(y) € 0A,,
9(Bn \ Y0) C Ay, g7'(G\ idg) C By} .
Thus

Cn — Dn, X Bna
acn == (aDn X Bn) U (Dn X aBn)
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We have then

> Fem) = Y (Treon)

(g,7D€EC, (g,v)EC, ~YEF
= Y ([reo) =3 ([Trem)
(9, 71)EDyXB, ~EF g€D, ~EF

On the other hand

> (Few)= Y (Il

(g)’Yl)EaCn (gawl)eacn 'YEF

- > (TLreem)”

(g,7)C(OD, X B, )U(D, xOB,) ~YEF

= %08, 3 ([T o) +#8, 3 ([Trwm)

geD, ~€EF geodD, ~EF

S (flgm)’

B (9,7)€EC,

2
> gcon, \ T erf(gn) ~
n geaD( YEF )2 Z (f(gyﬁ))z
EQEDH (HyeFf(g(’Y))> (9, 7)EC,

#88

But

S (TLraen) =B, Za@% Jf(( )) S (T reem)

geID, ~EF g€D, ~EF

Thus by (14)

~ #OB, 2acon S (@) iz
ST (flew)’ = (#Bn ”Zejrﬁ(a)) ST (flgm)’

(97’)’1)63@ (g”)’l)ecn
2
Z Z (f (9, ’71)
(g,)€Cy
which shows that C, is a generalized Fglner sequence for f []

This ends the proof of Theorem 7.
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5. LOWER BOUNDS

Now we will consider generalized Fglner sequences for functions f such
that

Pf > ||Plf.

This will enable us to obtain some lower bounds on the norm of random
walk operators on graphs.

As in Section 3, let X be a connected, locally finite graph and let P be
the simple random walk operator on X.

In this section we will prove the following lower bound on the norm ||P|| :

THEOREM 8. Let X be a graph such that at each vertex there are at most
k edges. Then
2vk —1

1Pl > 2

The norm of the random walk operator |P| is equal to 2————”;“1 for the
random walk on the tree which has k edges at each vertex. In [9] Kesten

proved this lower bound in the case of Cayley graphs.

Proof of Theorem 8. Let us consider a graph X such that at each vertex
there are at most k£ edges. We can suppose that &k > 3 because for k = 2
we obtain subgraphs of Z or finite graphs, and necessarily ||P|| = 1. As it is
enough to prove the desired bound for any connected component of X, we
can suppose that X is connected.

In order to show that ||P|| is large enough, we will construct a sequence
of functions f, € (X, N) such that

i sup H f Hl (X,N) —>_ .
n——+o00o “fn“lz(x,N) k

Let us endow the set of vertices of X with a metric. The distance between
two vertices 1s the smallest number of edges needed to connect them. Let us

choose a vertex e in X and for a vertex v let us denote by |v| its distance
from e.

Let f be the unique (up to translations and multiplications) radial
eigenfunction of P on the homogeneous tree of degree k, corresponding
to the eigenvalue 2——”12_1 which is the norm of P on this tree, i.e.
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k—2 1\
as) = g(oh = (5 ol+1) ( —)

Using (15) we can define f on X. We then prove

LEMMA 6. For any vertex v € X,

Pf(v) 2 > 2 f (V).

Proof. If v = e the result is clearly true. Let us consider then a vertex
v € X such that n = |v| > 1. Let the number of neighbors of v which are at
a distance n—1 or n from e be equal respectively to p and ¢. So the number
of neighbors of v which are at a distance n + 1 is equal to N(v) —p — gq.
Hence

1 .
Pf(v) = —— (pg(n — 1) + qg(n) + (N(v) —p — g@)g(n + 1)) .
N(v)

As p>1and g is a decreasing function,

Pf(v) 2 ——(—) (g(n — 1)+ N() — Dg(n + 1)) .

As Nw)<k and gn—1) > gn+ 1),

2vVk —1

1
Pf(w) > 2 (gn =D + (k= Dgln + 1) = ——

gmy. U

Let us denote by S, and B, the vertices which are respectively at a
distance n and less than or equal to n.

LEMMA 7.

D ves,, S WIN©) .
> ven, JHWIN(V) s

Proof. As 1 < N(v) <k it 1s enough to show that

Zvesn+1f2(7)) 0
Sep fAW) TR

Let us denote

=Y ) =S8’ m).

vES,
As |S,11| < (k—1)|S,| one has
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-2\’
(16) n+1 — |Sn—i-1|gz(n+1) _<_ (k_l)[Sn[gz(n_i_l) = <1 + ( ) a -

k—2n+k

We have to show that

(1'7)

ZUES,,.}.]JCZ(U) . an+1
Socnl W

7 n—00 0.

It is a standard exercise to show that (16) implies (17). [

Let f, be the sequence of functions which are restrictions of f to the
vertices that are at a distance not greater than n:

Jn =f

B, -

By Lemma 6 and Lemma 7 it follows that

Pfullp 2vVk —1
T 1Pl e vy S |
n—-400 anuﬁ(x,m k

which proves Theorem 8. [

Some examples of upper bounds on the norm of the simple random walk
operator on graphs and their comparison with the lower bound from Theorem 8
can be found in [22].
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