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A GENERALIZED F0LNER CONDITION

AND THE NORMS OF RANDOM WALK OPERATORS ON GROUPS

by Andrzej ZUK

Abstract. We prove a generalized Fplner condition. We present a method of
computing and estimating the norms of random walk operators on groups and graphs.
We give explicit computations in several cases.

1. Introduction

Let us consider a pair (T, S), where F is a finitely generated group and
S is a finite, symmetric set of generators (symmetric means S S~l).

For a finite subset A C T we define its boundary

dA {7 G A; there exists s G S such that 7s ^ A}

A F0lner sequence is a sequence {An}<£Ll of finite subsets of F such that
the cardinality of the boundary dAn of the set An divided by the cardinality
of An tends to zero, i.e.

#dAn

#An ~^°° '

Fplner proved in [4] that the existence of such a sequence is equivalent to
amenability of the group F.

One can associate with the pair (r, S) the simple random walk operator
P: l2(F) l2(F) :

Pfin) L y^/(7s) for / e /2(r)
ses
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Let |P|| be the operator norm of P acting on l2(T). In [8] Kesten proved:

THEOREM 1 (Kesten). The following conditions are equivalent:

(2) The group T is amenable, i.e. there exists a sequence {An}^fi=l of finite
subsets of r satisfying the F0lner condition.

In the next section we will prove a generalization of this result (Theorems 2

and 3), showing that equalities of the form jjP|| A, with 0 < A < 1, are

equivalent to appropriate Fplner-like conditions. Section 3 is devoted to some
remarks concerning this generalization. In Section 4 we use the generalized
Fplner condition to compute the norms of some random walk operators and

in Section 5, using the same ideas, we obtain some lower bounds for the

random walk operators on graphs.

After completion of this work, we learned that some versions of a

generalized Fplner condition were obtained recently by S. Popa [12].

Acknowledgements. I would like to express my gratitude to A. Hula-
nicki and to L. Saloff-Coste for several interesting discussions and remarks on
the paper, and for suggesting the example in Section 4.4. I also wish to thank
P. de la Harpe and the referee for their several valuable comments on this

paper. This work was done with the support of the Swiss National Science

Foundation.

Let us consider a measurable space (AT, J7). On this space we consider a

Markov transition kernel P(-,-)> i.e. for any x G X, P(x, •) is a probability
measure on (X, T) and P(-,A) is a measurable function on (X, T) for every

Let pi be a a -finite measure on the space (X, P*). F°r anY measurable

subset A C X we define its measure \A| and the measure \dA\ of its boundary
dA as follows:

a) \\p\\ i.

2. The generalized Folner condition

A G

IAI ß(A),
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We will suppose that the measure

(1) dm(x, y) dp(x)P(x, dy)

is symmetric on X xX. Let P be the Markov operator acting on L2(X, p) as

The above equation defines also an operator on the space of positive measurable

functions on X.
When condition (1) is satisfied we say that P is reversible with respect to

p. The Markov operator P is a self-adjoint operator on L2(X,p) if and only
if P is reversible with respect to p.

We denote by |v)l2(x,^) the scalar product on L2(X, p) and by ||P|| the

norm of P acting on L2(X,p).
For a real-valued measurable function / and for a measurable subset A C X

let us define a relative measure \A\p and a relative measure of its boundary

THEOREM 2. Let P be a Markov operator on a measurable space
{X.T7), which is reversible with respect to a measure p. Let f be a positive
eigenfunction of P with a positive eigenvalue A. Then the following conditions
are equivalent :

(1) There is a constant c > 0 such that for any measurable subset A C X of
finite measure

(2) |]P|| < A.

In the case where X is a Cayley graph of a group with a finite set of
generators S —S'like in Part 1, one can give the following formulation of
the above theorem.

\dA\f2 :

IA1^ < c,
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THEOREM 3. Let f be a positive eigenfunction for the simple random
walk operator P on the group F generated by a finite symmetric set S, with
the eigenvalue A, i.e.

pf y.
The following conditions are equivalent :

(1) mi-A.
(2) (Generalized F0lner condition) There exists a sequence {A^}^ of finite

subsets of r, such that

0.

Remark. In case where À 1 we can take the function / of Theorem 3

to be a constant function. We then obtain Kesten's theorem (Theorem 1).

There are also examples of amenable groups (see [2]) for which there

exist eigenfunctions of the simple random walk operator corresponding to the

eigenvalue equal to one and which are not constant. The generalized Fplner
condition applies also to them.

Theorem 2 will be deduced from the following proposition.

PROPOSITION 1 ([7,13]). Let Q be a Markov operator on which
is reversible with respect to a measure p. Assume that there exists a constant
c > 0 such that for any measurable subset A C X of finite measure

(2) \A\<c\dA\.

Then

II/Oil „ ~
^ - V2c

In order to give a clear proof of Proposition 1, we need the following
lemma.

LEMMA 1 ([13]). For a non-negative measurable function f with compact

support in X one has

I {xex} J {yex}

POO

Ifix)-f(y)\Q(x, dy)dfi(x)=2
Jo
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Proof

I f(x) ~
* {xex} J{vex}

2/ / (f(x)-f(y))Q(x,dy)d/j(x)
J{xX} J{yexj(x)>f00}

2 [ [ [ l[/iT)/(.r
J{y6X/(.v)>/Cr)} -/0

2 [ [ [ l[/tv)/w)WÔ(
Jo J{xeX} J {yX:f(x)>f(y)}

2 f( [ Q(x,dy)d/j,(x))dt
Jo yJ{xeX:f(x)>t} J{yexj(y)<t}'

2
p CO

/ |9{/>?}|rff.
Jo

Proof of Proposition 1. Let us consider a real-valued measurable function

/ with compact support in X. The above lemma applied to the function f2
and the strong isoperimetry condition (2) gives :

[ [ \f2(x)-f2(y)\Q(x,dy)dn(x) 2f\d{f2> t}\dt
J {aGA} J { YGA} J0

2 f°° 1 f> -I \f2 >-/ f2(x)d/j,(x).
c J 0 c Jx

On the other hand

[ [ \fHx)-f(y)\Q (x,dy)dfi(x)
J {aGA} J {};GA}

< [[ [/M-/(jO|(/M| + Lf(y)\)Q(xJ {aGA} J {yGA}

2/ [ \f(x)-f(y)\\f(x)\ Q(x,dy)d/j
J {aGA} J {\'GA}

2 [([ I/O) -f(y)\Q(x,dy)]\f(x)\dß(x)
J{xex} yj{yex} '

^ 2 [( [I fix) -f(y)\2Q(x,1

./'(.V) f///(.vj
J {aGA} J { YGA} f

-2([ [ \f(x)-f(y)\2Q(x,dy)dß(x
yJ{xex} J{yex} / vJ{.vex} '

2V2((I-Q)fJ)l{xJ\f\\LHx^.
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Hence

As Q is a self-adjoint operator, this is equivalent to

llôlUw^)<i-^<i-
Let P be a Markov operator, reversible with respect to the measure fi.

Let / be a positive eigenfunction of P for the eigenvalue À.

LEMMA 2. 77z<? operator defined by the kernel

Q(x,dy)A ~1f(x)~

is a Markov operator and is reversible with respect to the measure f2p.

Proof. The kernel Q(x, dy) is a Markov transition kernel, because :

/ Q(x,dy) \~lf(x)~l [ A-1/^)-1 A/(x) 1.
«{yEX} J {yzX}

In order to prove reversibility of Q, we have to prove that the measure

dm'(x,y)=f2(x)dß(x)Q(x,dy)

is symmetric on X x X, knowing that the measure

dra(x, y) d/i(x)P(x, dy)

is symmetric on X x X.
This follows from the following equalities, where B is a measurable subset

of X x X :

[ dm'(x, y)[ f2(x)dn
Jb JB

=A-1 [
Jb

^"1
Jb=A-1 [
Jb

dm'(y,x).
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Proof of Theorem 2. Clearly, condition (2) in Theorem 2 implies condition

(1). In order to prove the converse let us consider the Markov operator Q

defined in the previous lemma and the measure f2\i on X. Here we add to

the notation for \A\ and \dA\ an index (ß,/2/i) in order to distinguish when

these notions are used for (P,/i) or for (Q,f2fi). One has

\A\(Q,ffi)_ f f2(x)dp(x)I AU
J{x£A}

|0A| (ß,/U) /f \f-\x
J {x£A} J {yeAc} A

t [[ f(x
Ä J{x£A} J{y£A'}A

The first condition implies that there exists c' > 0 such that

c>\dA\(ß./V)> |A|(ß./U);

which by Proposition 1 implies that

\\Q\\L2(X,Ph)^L2(X,PH)<1
•

Let pIIQII p(xtf2fi)-*L2(x,f2ij,yForany T2(X. p) :

(Pg,g)ii(x,ß)«=A (o fjf<Xp/ll\\ \J J J J,/V)
^p(g^g)i2(x,ß)

As P is a self-adjoint operator and p <1, this implies

ll-^ll L2(X,ß)-xL2(X,ß) < ^D

Proof of Theorem 3. One knows (see Section 3) that P has positive
eigenfunctions only for the eigenvalues greater than or equal to [|P||. So the
second condition implies the first one.

In order to prove the converse, we remark that for 7 ~ 7' g T one has :

j^fd') <fh) <x(WCV),
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This implies that

>/-£/2(7)>
7GA

\dA\p<Yf2^^ X\dA\p
7£<9A

By Theorem 2, the first condition implies the second one.

Remark. The proof of Theorem 3 can easily be generalized to the

case where P is a convolution operator with a finitely supported probability
measure.

3. Remarks

We will now make some comments about Theorems 2 and 3. We will
state some theorems about the existence of eigenfunctions for the Markov

operator and discuss whether one can take in the generalized Fplner condition
the eigenfunctions to be in L2(X1 p).

For simplicity we will suppose that X is a connected, locally finite graph
(i.e. the degree of each vertex is finite) and we consider the simple random
walk going with equal probability from one vertex to any of its neighbors. We

associate with this random walk the simple random walk operator P defined by

pm d— Yfw for /e Uvao
W~v

where N(v) is the degree of vertex v in X (i.e. the number of edges adjacent

to v), where w ~ v means that w and v are connected by an edge and

where l2(X,N) is the space of real-valued functions / on the vertices of X
such that J2xexf2(xW(x) is finite.

3.1 Existence of eigenfunctions

THEOREM 4 ([20]). Let X be an infinite, locally finite graph and let P

be the simple random walk operator on l2(X,N). For any À > ||P|| there

exists a positive eigenfunction f of P with eigenvalue i.e.

Pf(x) — Àf(x) and f(x) > 0 for x G X

For X < ||jP|| there are no positive eigenfunctions of P with eigenvalue X.
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Proof. There are several proofs of this theorem. In [20] one can find the

proof where the analogue of Perron-Frobenius theory is developed and in [11]
the truncation method is used.

3.2 Eigenfunctions in 12

One can ask whether the positive eigenfunctions of the random walk

operator are in l2(X,N). The answer is no in the case when X is the Cayley
graph of an infinite group T (see Theorem 5). But in the general case there

are examples of eigenfunctions which are in l2(X,N) (see Proposition 2).

3.2.1 The case of groups

THEOREM 5. Let f be a positive eigenfunction of the simple random
walk operator P on the group T generated by a finite symmetric set S, i.e.

Pf Xf. If r is infinite then

X]/2(7) +oo.
7ET

Proof. Suppose the contrary, i.e. that there is a positive eigenfunction /
of the operator P for which the I2 norm is finite :

Pfo Xfo,

y^/o (7) < +00.
7er

The second condition implies that f0 is not constant and so there are 70,71 7 F
such that

/o(7o) </o(7i) •

Let us define the function f\ as a translation of by 707]-1, i.e.

/i(7) —/O(7O7i_17) •

The function fx,beingthe translation of is an eigenfunction of P, i.e.

Pfi A/i.
So the function / defined as follows :

/(7) max{/0(7),/i(7)},
satisfies

Pf> Xf-
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As fo and f\ are in /2(F), the function / is in /2(T) as well. The functions
fo and fi have the same I2 norms and

/i(7i) =/o(7o) </o(7i)i

so there exists 72 G T such that

/l(72) >/o(72).

Note that these two inequalities imply that / > /o with equality at some

points and strict inequality at some other points. Thus g =f— fo satisfies

g > 0, g ^ 0, g vanishes at some points and Pg > Xg. Let us prove that this

implies Pf ^ Xf. Indeed, if we had equality then Pg — Xg as well and thus

Png Xng. Taking n large enough makes Png non-zero at points where g
vanishes, a contradiction. We have thus shown that Pf > Xf with Pf Xf.

This means that

IT/ik(r, > All/iU(D-

Hence

M> A.

But this provides the desired contradiction because by Theorem 4 there

are no positive eigenfunctions of P with an eigenvalue smaller than the norm
of P.

3.2.2 The general case

It will be shown that there are examples of the infinite graph X and the

simple random walk operator P for which there is a positive eigènfunction in
l2(X,N). It was pointed out to us by the referee that when P is the adjacency

operator, examples of infinite graphs with positive eigenvalues in /2 can be

found for instance in [5] (page 232).

Let A be a uniform tree (i.e. a simply connected graph) of degree 3. By
a theorem of Kesten (see [9]) one knows that ||P|| |\/2 < 1. Let a and b

be two neighboring vertices in X. Now let Xn be a graph which is the same

as the graph X, except that the edge (a,b) is subdivided into n vertices. Let
In denote the set of vertices a, b and added vertices which we label 1,..., n

(see Figure 1). Let Pn be the simple random walk operator on Xn. One has

||P„|| —00 1- In fact we will prove:
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Figure 1

The graph Xn

Proposition 2. Fon>l one has

,M>cosUh)>HF
For any no > 1 such that ||P„0|| > |\/2 the eigenfunctions of Pfh

corresponding to the eigenvalue 11/%)] are in l2(Xno^N).
no II / ^ y ^ & IgCrf IJ IA>[LiL/f lo L/J JL

piQ

Wo 11 are in l2(X„0,

Proof. For n>7 let tsin(^3)/ sin(^j) so that 0 < < 1.

For x G X\In let |x| be the minimum of its distances from a and b. We

define the function fn on Xn as follows :

f for y e X\ In

fn(y)=t
J sin(^5ü)/sin(5^) for > 1,... ,n
[ 1 for y a, b.

We verify that

Pnfnify COS -f— /„(/) for / 1, rt
\n + 3/

Pnf,ix)=^(C0S_1(^^) + 2 C0S fn

On the other hand for n > 7 we have t < -4= and
v3

oo

Y fn(x)N(x)=2^2- • 3 < 00
xEX„\I„k= 1

Thus fn is in l2(Xn,N)and

Pnfn > COS f '\n + 3/
So we have proved the first part of Proposition 2.
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Let no be such that

ll-^no llp(X„0,^V)—.
Now let / be an eigenfunction of the operator Pno with the eigenvalue a, i.e.

PnJ crf.

We want to show that / G l2(Xno,N). Suppose this is not true, i.e.

^2 f2(x)N(x)+00
x(EX,1Q

By Theorem 2, there exists a sequence of subsets of Xno, Ak C XnQ such that

ni E,e^/2(*AW^ nu ExAkf2(x)N(X)
^°°U-

As Ino is a fixed finite set, the sequence Ck Ak\ Im is non-empty for k

sufficiently large. We need the following :

Lemma 3. One has

T.xdCtf2WN<X)

ExeC* f2(x)N(x)^°°
Proof. If ^2xeAkf2(x)N(x) 00 00 then the statement of the lemma is

clear. Suppose then that for all k

(4) y^/2(x)A(X) < ce < 00
xÇzAk

If Ak D /„0 0 then A* and Q coincide. So we are interested only in those

k for which Ak 01no f 0. Let us consider the ball BR of radius R centered

in a G Ino (i.e. those vertices in Xno for which at most R edges are needed

to connect them to a).
Because of (3) and (4) we have that for k sufficiently large -OAk 0BR 0

which, by the fact that H 40 f 0, implies that BR C Ak. But R can be

chosen arbitrarily large and as / is not in l2(X,N) we get

Y^f2(x)N(x) o 00
x<EAk

which contradicts (4). This completes the proof of the lemma.

On the subsets Q the graphs X and XnQ coincide. This implies :

2V2
IK II l2(X,N)^l2(X,N)— > '

which yields the desired contradiction. This ends the proof of Proposition 2.
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4. Norms of random walk operators

Now we will show how Theorem 3 can be used in the problem of computing
the norm of the random walk operator P on some groups. Our strategy is as

follows : we want to find a positive eigenfunction for the operator P which
satisfies the generalized Fplner condition. By Theorem 3 such an eigenfunction
always exists and the eigenvalue corresponding to this eigenfunction is equal

to the norm of the operator P. Theorem 3 is a particular case of Theorem 2

which can also be helpful in computing the norms of more general operators
as shown in Section 4.3.

4.1 Free groups

First of all, as a simple illustration of this method, we will compute the

norm of the simple random walk operator on free groups, which was first
done by Kesten (see [9]) using a different method.

THEOREM 6 (Kesten). Let T be the free group generated by the standard
symmetric set of generators S. The norm of the simple random walk operator
P associated to (r, S) is equal to

Proof The Cayley graph of (F, S) is a homogeneous tree Tk of degree
k #S. We draw the tree Tk with level lines as in Figure 3 (level lines are
marked by dotted lines). Let us choose arbitrarily a line as the line of level
0. We construct a function on vertices of this tree which depends only on the
level of the vertex. For a vertex v G Tk we denote by \v\ its level. We define
f:Tk—> R+ as follows

Let An be the set of vertices in Tk consisting of a chosen vertex e from the
level 0 and the vertices lying below e up to the level n (in Figure 3 the
vertices of A2 are marked with circles). Then

One has
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^~2f2(v) n+ 1,
v£An

22f2(v) =2 •

v£dAn

This shows that {An}^:1 is a generalized F0lner sequence and by Theorem 3

a

4.1.1 Remarks on generalized growth

Let r be a group generated by a finite, symmetric set S. For id ^ 7 G T
we define its length \j\ as the minimal number of generators from S needed

to represent 7, i.e.

I7I min {n;7 sh G S},

and we declare \id\ =0.
The growth function (see [10], [18]) of the pair (T,S) associates to each

integer n > 0 the number /3(F, S)(n) of elements 7 G T such that 171 < n,
i.e.

ß(T,S)(n)#{7 G T; I7I < n}

One is often interested only in the type of the growth function. For instance,

we say that the group F is of polynomial growth if there exist constants c

and D such that

c~lnD<ß(T,S)(n<cnD

The exponent D does not depend on the set of generators S. If the growth
function is bounded by a polynomial, it is known (see [6]) that F is of
polynomial growth and D is an integer. For a group of polynomial growth
with the exponent D, it is known (see [19]) that there exists a constant c

such that

(5) c~ln~ 2 < P2n(id^id) < cn~ï

where P2n(id,id) is the probability of the return to the identity element of
the simple random walk after 2n steps.

It seems natural to define a generalized growth function, using an

eigenfunction of P. Let / be a positive eigenfunction of P corresponding to

the eigenvalue equal to the norm of P, i.e.

pf=\\p\\f-
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I

The generalized growth function /3(F, 5,/) associates to each positive

integer n the number

M.s.fm-- /2(7),
7GT, I7I <n

i.e., each element in the ball of radius n is counted with weight /2.
Let us compute the generalized growth function in a particular case. Let

P be the simple random walk operator on the free group with the standard

set of generators of cardinality k as in Section 4.1. Let g be the unique
radial eigenfunction of P corresponding to the eigenvalue ||P|| and such that

g(id) 1. Explicitly we have :

(k — 2 \ / 1 \
0(7)= (—17, + 1

Then we have

92(l)
7GT,|7|<n

3 {k2 — 4k +4\2/3k2-S,k + 4

\ 3k2-3k)+nV 2*2-2* + "
V 6F - 6k J + 1

'

This shows that the generalized growth is like n3. In particular the sequence
of balls is a generalized Fplner sequence.

By analogy to (5) we conjecture that the fact that the generalized growth
function for the free groups is like n3 explains that for the free groups one
has (see [16]):

c~lX2nn-i < P2n(id,id) < c\2nn~i

where c is a constant and A is the norm of P.

4.2 Free products of finite groups

Random walks on free products of finite groups were already considered
in [1], [3], [17] and [21].

Let us consider the group Zm * Zn with the following generating set :

• if m ^ 2 we take {±1} as generators of Zm {0,1,..., m - 1} ;

• we take {1} as a generator of Z2 {0,1}.
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In Figure 2 we represent the Cayley graph for Z2 * Z4 with the above set

of generators. In general the Cayley graph for Zm * Zn with the generating
set defined above has the following construction:

• m-gons and zz-gons are attached to each other;

• at each vertex of an n-gon there is one m-gon attached and at each vertex

of an m-gon there is one zz-gon attached.

4.2.1 Z2 * Z4

We will present our method in the special case for Z2 * Z4. The Cayley

graph for this group is represented in Figure 2. Our aim is to construct the

eigenfunction / of the random walk operator satisfying the generalized Fplner
condition. By Theorem 3, the eigenvalue corresponding to this eigenfunction
is equal to the norm of a random walk operator. We will construct / in two

steps.

Figure 2

Cayley graph for Z2 * Z4
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Step 1. If we contract the squares to points, the Cayley graph for Za*Z4
is deformed to the homogeneous tree 74 of order 4 (each vertex has 4

neighbors), which is represented in Figure 3. First of all we construct a

function on vertices of 74 satisfying the generalized Fplner condition.
We draw the graph 74 as in Figure 3, i.e. with one point set apart at

inhnity. The level lines or horocycles are marked by dotted lines. Each vertex
of 74 has one neighbor above and three neighbors below.

Let us fix two positive numbers r, s and define the positive function g
on the vertices of the tree 74

as follows:

if w is a neighbor of v lying below v then (see Figure 4)

(1) g(w) — rgiv) if w is the right or left neighbor;
(2) g(w) sg(v) if w is the middle neighbor.

The above defines the function g up to a constant. Let us fix one vertex
e (for instance lying on the horocycle of level 0) and put g(e) 1.

g : (vertices of 74) —> R+

2

0

Figure 3

Tree 74 of order 4
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Now we need

LEMMA 4. For 2r2 + s2 1 f/ze junction g satisfies the generalized
F0lner condition, i.e. there exists a sequence {An}^=l of finite subsets of 74

such that

dA„92(V)E9 x —»00 ^ •

veA. 92(V)

Proof. Let An be the subset of vertices of the tree 74 consisting of e

and the vertices lying below e up to the level n (in Figure 3 the vertices of
A2 are marked with circles).

One can easily see that

^2 g2(v)n + 1,
V(zAn

^2 g2(v)

v G dAn

Thus {An}^f{ is a generalized Fplner sequence for P corresponding to g.

Figure 4

Labelling of vertices and the definition of the function g

Step 2. The second step consists of labelling the vertices of the Cayley

graph of Z2*Z4 with a, b or c (the precise values of the numbers a,b and

c are given later). The vertices of each square are labelled as in Figure 4.

This defines the unique labelling if we bear in mind the way we have drawn

the tree 74 obtained by contracting the squares (see Figure 3).
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Now we can define the positive function / on Z2*Z4 as follows. If v is

the vertex of type t (t a, b or c) of the square which corresponds to the

vertex w of the tree T4 then

f(v) tg(w)I.

We want to find <2, b, c, r, s and À so that / is an eigenfunction of the

random walk operator P with the eigenvalue À.

Let us write the equation

Pf A/

for vertices of type a, b and c. On a vertex of type a, the function / has

to satisfy the following

b + 2br
x

(6) —-— Aar,

c + lbs
(7) —-— Xas

For a vertex of type b, function / has to satisfy

a + c + ar
(8) Ab

and for a vertex of type c, function / has to satisfy

2b + as
(9) —5— =Ac.

If / satisfies the above conditions it is an eigenfunction of P with the

eigenvalue À. For 2r2 + s2 1, by Lemma 4 the function g satisfies the

generalized Fplner condition and so does /. So we want to have a condition

(10) 2r2 + s21.

After solving equations (6)-(10) we obtain the following values for a, b, c,
r, 5 and X (a, b and c are determined up to a constant so we suppose
a-1) :

1
u\J l — 2w2 l — 2w2

û=l; b

where

-1 + 4u2 '
— 1 + 4u2 '

A
3Vl — 2M2

\/33 — 1
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For the above values, / is an eigenfunction of the operator P and satisfies

the generalized Fplner condition. By Theorem 3 the norm of the random walk

operator on Z2*Z4 with the generating subset as defined before is then equal
to

4.2.2 General case

The idea presented for Z2*Z4 can be used in the general case for Z„*Zm.
As the solution involves roots of some polynomial of degree nm, we will not
give details.

4.3 Mean operator on the hyperbolic plane

Let us consider the hyperbolic upper half-plane H {z — x + iy G C;

x G R, y > 0} with a Riemannian metric dnz ^dx^dy which gives rise

to the measure ßH ^pr • We consider the operator P,

where dmR is a uniform probability measure on a hyperbolic circle of radius R.
We want to compute the norm of the operator P acting on L1{H)dHz).

First of all let us remark that the function:

is an eigenfunction of P. An easy way to see this is to note that P

commutes with isometries of H and that the isometries consisting of horizontal
translations and homotheties act transitively on H. The effect of these on the

function / is that they just multiply it by a constant.

Now we would like to show that one can find a Fplner sequence with
respect to the function /. Let us consider a sequence {An}(£Ll of rectangles

(in the Euclidean sense) in H :

(H) f(z) x/ÏMz),

An {z G H ; e n < Im(z) < 1, 0 < Re(z) < n}

It is easy to see that the measure | dAn \ of the boundary of An is bounded

bv the measure of the following set B„ (see Figure 5) :
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0

Figure 5

Sets An and Bn

Bn ={zGH;-R< Re(z)<R,eR>Im(z) > e~"~R}

U {z G H; -R + n< Re(z) < n > Im(z) > e~"~R}

U {zeH\—R <Re(z)<n+R, > Im(z) > e"R}

U {z G H; —R<Re(z)<n + R, e~"+R > Im(z) > e""~R}

One can see that

I|y2 ~ ft-i \An\fl ^ I •

This shows that is a generalized F0lner sequence. Thus

\\p\y(H,dHz)^LHH,dHz)/
J\z-i\=R

4.4 Wreath products

Let G and F be finitely generated groups. We define the wreath product

GIF of these groups as follows. Elements of GIF are couples (<7,71) where

g: F —> G is a function such that g(7) is different from the identity element

idc of G only for finitely many elements 7 in F, and where 71 is an element

of F. The multiplication in GIF is defined as follows :

(51,71X92,72) (93,7172)

where
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03(7) 0i(7)02(77i) for 7 G F

If SG and Sp are generators of G and F respectively then

{(0? 7) > (0CO — idci 7 E or (g(F \ idp) z7?g, 9(idp) G Sg? 7 zd/r)}

is a generating subset for GIF.
Let n and is be symmetric, finitely supported probability measures on F

and G respectively.
As there is a natural embedding of F and G into GIF, one can view

the measures p and z/ as measures on GIF. More precisely :

is(g(idp)) if 7 idp and g(F \ idp) idG
^(0» 7)= n t0 otherwise,

f M(7) if 0OF) idG
M(0,7) S

At 0 otherwise.

Then p * v * p is a symmetric measure on GIF. Explicitly we have :

At(7(7o)_1)M7oM0(7o)) if fK-F \ 7o) idG
H*vkpg,7)t 0 otherwise.

We want to prove:

THEOREM 7. F azid G be finitely generated groups. If F is amenable
then the spectral radius of is on G is the same as the spectral radius of
p*is * p on GIF.

Proof. We will prove Theorem 7 by constructing on GIF a positive
function / which is an eigenfunction for the convolution by p* is * p with
eigenvalue IMI/2(G)-w2(G) anc* ^or which there exists a generalized Fplner

sequence.
Let / be a positive eigenfunction for the operator which is a convolution

on /2(G) by z/, corresponding to the eigenvalue \\is\\, i.e.

(12) f * v \\is\\f.

We can normalize / so that

(13) f(idG) 1.

By Theorem 3 (and the remark after its proof) there exists a sequence of finite
subsets AncG, such that
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E7göa„/2(7)
n

E7eA,/2(7)

As the group F is amenable there exists a sequence of finite subsets Bn C F,
such that

#dBn

mn n^°° o.

For technical reasons let us choose the sequences Bn and An in such a way
that

#dBn1 E7g^„/2(7 _J_}
#Bn <nanE7Sa,/2(7)

Now, on GIF we define / as follows

7(5 j 7i)
7 GE

The function / is well defined because by (13), f(g(7)) is different from 1

only for finitely many 7 G F. This function is of course positive and does

not depend on 71. From (12) one has

||z/|| |7|

To complete the proof of Theorem 7 it is enough to construct a generalized
Fplner sequence Cn C GIF for /. We define Cn as follows :

c„ {(y,7i);7i g Bn, g{Bn)Cg'l{G \ C Bnj

LEMMA 5. The sequence Cn C Gl F is a generalized Fqlner sequence
for f.

Proof. Let us define sets Dn and dDn as follows :

Dn t {g: F ->G; g(Bn)c An, g"l{G \ c Bnj

dD„ - {g : F->G;thereexists 70 Bn such that 5(70)

g(B„ \ 7o) C An, g~\G\ c

Thus

Cn Dn x Bn^

dCn (dDn X Bn) u (Dn X dBn)



344 A. ZUK

We have then

\255 </(3,7I))2= XI (n/(f(7))
(9,7i)C,i (g,70GC,, 7GF

E (riAff(7))) -#5.E(II^7))
(Pj7i)^AI xß„ 7GE gGAi 7GE

On the other hand

\ 2
55 (/(5>7i)) 55 (nAsw)

(S>7i)G'9C„ (5,7l)ëdC„ 76F

But

E (I1a5(7))
(g,-ri)C(dDnxBn)U(DnxdBn) 7GF

=#3Bn53(n/(^(7)))2+#B„ 53 (n/^(7))
gGZ)„ 7GF g£dDn 7 GF

~ #£„ E À 7i))
0,7i)^C„

EseaA,(n7ef/(5(7))) 2
H 7- 5v 7(5,7i)J

Ey. D„(iI / /Gl?))) (5>7l)ec„

s (n/W»)2=E (n/<»w>)2
£/GÖA, 7GE Z-^aeAnJ v ^

^GDn 7GF

Thus by (14)

E E 7(9.T))2
0,7,)£9C„

V w / (ffi7l)G|

E (À5,7i))2,
(£,7i )GC„

which shows that Cn is a generalized F0lner sequence for /.

This ends the proof of Theorem 7.
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5. Lower bounds

Now we will consider generalized F0lner sequences for functions / such

that

pf>\\p\\f-
This will enable us to obtain some lower bounds on the norm of random

walk operators on graphs.

As in Section 3, let X be a connected, locally finite graph and let P be

the simple random walk operator on X.
In this section we will prove the following lower bound on the norm ||P|| :

THEOREM 8. Let X be a graph such that at each vertex there are at most

k edges. Then

The norm of the random walk operator ||P|| is equal to for the

random walk on the tree which has k edges at each vertex. In [9] Kesten

proved this lower bound in the case of Cayley graphs.

Proof of Theorem 8. Let us consider a graph X such that at each vertex
there are at most k edges. We can suppose that k > 3 because for k — 2

we obtain subgraphs of Z or finite graphs, and necessarily ||P|| 1. As it is

enough to prove the desired bound for any connected component of X, we
can suppose that X is connected.

In order to show that ||P[| is large enough, we will construct a sequence
of functions fn G /2(X, N) such that

r \\Pfn\\p(X,N) ^ 2yjk — 1

limsup TFÏI 1— •

«->+oo \\Jn\lp(X,N) K

Let us endow the set of vertices of X with a metric. The distance between
two vertices is the smallest number of edges needed to connect them. Let us
choose a vertex e in X and for a vertex v let us denote by \v\ its distance
from e.

Let / be the unique (up to translations and multiplications) radial
eigenfunction of P on the homogeneous tree of degree k, corresponding
to the eigenvalue 2v^~T, which is the norm of P on this tree, i.e.
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(is /W=3(W)=(^M + ,)(-sLf)M.
Using (15) we can define / on X. We then prove

LEMMA 6. For any vertex v G X,

Pf(v)> 2v^ ~ V(g).
k

Proof. Ft v e the result is clearly true. Let us consider then a vertex

v E X such that n | vj > 1. Let the number of neighbors of v which are at

a distance n — 1 or n from e be equal respectively to p and q. So the number
of neighbors of v which are at a distance n + 1 is equal to N(v) — p — q.
Hence

Pf(v) (p#(« - 1) + ^(w) + (N(u) - /? - + 1)3

As p > 1 and g is a decreasing function,

m») > ttJ-T (<?(« - 1) + - + 1))
N(v)

As N(v) < k and g(n — 1) > <7(71 + 1),

Pf(v) > J (g(n -1) + (k - l)g(n + 1))
2^^7

1

Let us denote by Sn and J5n the vertices which are respectively at a

distance n and less than or equal to n.

Lemma 7.

Eves„+lf2(v)N(v)

EveB„f2(v)N(v)

Proof As 1 < N(v) < k it is enough to show that

E^„+1/2(«>
E,e*„/2W ~^°° '

Let us denote a«DAv) I

v£Sn

As \Sn+i \ <(k — l)|Sft] one has
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(16) an+§ \S„+i\g2(n+l) < (k-l)\S„\g2(n+l) ^1 + ^ +

We have to show that

^2vesn+if kO
_ an+\ n

(17) "= - - — " : >n-^oo u •

&n

T,vgbJ2(v">

It is a standard exercise to show that (16) implies (17).

Let fn be the sequence of functions which are restrictions of / to the

vertices that are at a distance not greater than n :

fn =/k •

By Lemma 6 and Lemma 7 it follows that

\\Pfn\\p-(X,N) ^ 2\/& ~ 1

which proves Theorem 8.

Some examples of upper bounds on the norm of the simple random walk

operator on graphs and their comparison with the lower bound from Theorem 8

can be found in [22].
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