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318 D. LUNA

montre que les racines de G forment un «systeme de racines» (voir [Bo]
§ 14 et [Sp] chap. 8). Dans cette note, on propose une preuve plus «basique »,
plus proche de I’esprit géométrique du début de la théorie.

Je voudrais remercier le referee pour ses remarques constructives.

1. Notons C la composante neutre de 1’intersection des R,(B) (B € BT).
Désignons par X la variété des drapeaux de G, et par X7 I’ensemble des points
fixes de T dans X. Pour tout p € X7, posons X(p) = {x€ X |pe T x}.

PROPOSITION. Les X(p) (p € X') sont des ouverts affines de X, stables
par C.

Montrons d’abord que la proposition implique le théoréme. Il est clair que
R,(G) C C. Pour établir I’inclusion opposée, il suffit de montrer que C opere
trivialement dans X.

Puisque T et C sont résolubles connexes et que X est complet, les seules
orbites fermées de T et de C dans X sont les points fixes. Par suite, les X(p)
(p € XT) recouvrent X, et pour tout x € X, il existe dans C - x un point y
fixé par C. Si p € X7 est tel que y € X(p), alors X(p) contient aussi C - x.
Mais toute orbite d’un groupe unipotent dans une variété affine est fermée
(voir [Bo] page 88, ou [Sp] page 37). D’ou x =y, ce qui montre bien que
C opere trivialement dans X.

2. Prouvons maintenant la proposition. Comme tout espace homogene, on
peut plonger X dans un P(V), ou V est un G-module rationnel de dimension
finie. On peut supposer que X ne soit contenu dans aucun P(W), quel que
soit I’espace linéaire propre W de V. Choisissons un groupe a un parametre
multiplicatif A: k¥ — T tel que k*, opérant dans V a travers A, ait les mé&mes
vecteurs propres que T .

On utilisera la «décomposition de Biatynicki-Birula» de X associée a A
(voir [B-B] et aussi [Bo], 13.3). Pour tout p € X7, posons

XO\p) = {x € X [ 1im A®) -x = p}

Les X(\,p) (p € XT) sont localement fermés dans X et leur réunion (disjointe)
est égale & X. Puisque X7 est fini, il existe un (unique) p° € X' tel que
X(\,p°) est ouvert dans X. Pour tout v € V '\ {0}, notons [v] le point de
P(V) «en dessous» de v. Soit vy,...,v; une base de V, formée de vecteurs
propres de T, et telle que [vi] = p°. Sotent n; (i =1,...,d) les entiers tels
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