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318 D. LUNA

montre que les racines de G forment un «système de racines» (voir [Bo]
§14 et [Sp] chap. 8). Dans cette note, on propose une preuve plus «basique»,
plus proche de l'esprit géométrique du début de la théorie.

Je voudrais remercier le referee pour ses remarques constrictives.

1. Notons C la composante neutre de l'intersection des RU(B) (B G Br).
Désignons par X la variété des drapeaux de G, et par XT l'ensemble des points
fixes de T dans X. Pour tout p G XT, posons X(p) — {x G X | p G T • x).

PROPOSITION. Les X(p) (p G Xt) sont des ouverts affines de X, stables

par C.

Montrons d'abord que la proposition implique le théorème. Il est clair que
RU(G) C C. Pour établir l'inclusion opposée, il suffit de montrer que C opère
trivialement dans X.

Puisque T et C sont résolubles connexes et que X est complet, les seules

orbites fermées de T et de C dans X sont les points fixes. Par suite, les X(p)
(p G XT) recouvrent X, et pour tout x G X, il existe dans C x un point y
fixé par C. Si p G XT est tel que y G X(p), alors X(p) contient aussi C - x.
Mais toute orbite d'un groupe unipotent dans une variété affine est fermée

(voir [Bo] page 88, ou [Sp] page 37). D'où x y, ce qui montre bien que
C opère trivialement dans X.

2. Prouvons maintenant la proposition. Comme tout espace homogène, on

peut plonger X dans un P(L), où V est un G-module rationnel de dimension

finie. On peut supposer que X ne soit contenu dans aucun P(W), quel que
soit l'espace linéaire propre W de V. Choisissons un groupe à un paramètre

multiplicatif À : k* —* T tel que k*, opérant dans V à travers À, ait les mêmes

vecteurs propres que T.
On utilisera la «décomposition de Bialynicki-Birula» de X associée à À

(voir [B-B] et aussi [Bo], 13.3). Pour tout p G XT, posons

X(\,p) {x G X I lim \(t) • x p}
>o

* *

Les X(\,p) (p G XT) sont localement fermés dans X et leur réunion (disjointe)
est égale à X. Puisque XT est fini, il existe un (unique) p° G XT tel que

X(X,p°) est ouvert dans X. Pour tout v e V\ {0}, notons [u] le point de

P(V) «en dessous» de v. Soit v\,...,Vd une base de V, formée de vecteurs

propres de T, et telle que [v\] p°. Soient nt (i 1,..., d) les entiers tels
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