Appendix: Proof of Proposition 3.1

Objekttyp: Appendix

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 45 (1999)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
29.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Appendix: Proof of Proposition 3.1

We start with some lemmas.
Lemma A.1. Let A be a commutative ring with identity on which a finite group G acts, let A^{G} be the invariant subring, and let B be a flat A^{G}-algebra. Then G acts on $B \otimes_{A^{G}} A$ through its action on the second factor and the invariant subring of this action is B.

Proof. We have an exact sequence

$$
0 \rightarrow A^{G} \rightarrow A \rightarrow \prod_{g \in G} A
$$

where $\prod_{g \in G} A$ is the direct product of $|G|$ copies of A, and $A \rightarrow \prod_{g \in G} A$ is defined by $a \mapsto(g a-a)$. Since B is a flat A^{G}-algebra, the tensor product of B with the above sequence remains exact, that is, the sequence

$$
0 \rightarrow B \rightarrow B \otimes_{A^{G}} A \rightarrow \prod_{g \in G} B \otimes_{A^{G}} A
$$

is exact. Hence $B=\left(B \otimes_{A^{G}} A\right)^{G}$.
Let A be a finitely generated k-algebra on which a finite group G acts. Then A is finite over A^{G}. For every prime ideal \mathfrak{q} of A^{G}, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be all the prime ideals of A lying over \mathfrak{q}. It is known that G acts transitively on $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$. Fix a $\mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$. Let $G_{d}=\{g \in G \mid g \mathfrak{p}=\mathfrak{p}\}$ be the decomposition group at \mathfrak{p}.

LEmma A.2. Notation as above. Let $\widehat{A^{G}}{ }_{\mathrm{q}}$ be the completion of the local ring $A^{G}{ }_{q}$ and let $\widehat{A_{\mathfrak{p}}}$ be the completion of the local ring $A_{\mathfrak{p}}$. Then G_{d} acts on $\widehat{A_{\mathfrak{p}}}$ and $\left(\widehat{A_{\mathfrak{p}}}\right)^{G_{d}}=\widehat{A_{\mathrm{q}}}$.

Proof. Since $A^{G}{ }_{\mathrm{q}}$ is a flat A^{G}-algebra, we have $\left(A^{G}{ }_{\mathrm{q}} \otimes_{A^{G}} A\right)^{G}=A^{G}{ }_{\mathrm{q}}$ by Lemma A.1. Replacing A by $A^{G}{ }_{9} \otimes_{A^{G}} A$ if necessary, we may thus assume that A^{G} is a local ring and \mathfrak{q} is the maximal ideal of A^{G}.

Let \widehat{A} be the completion of A with respect to the $\mathfrak{q} A$-adic topology. Since A is a finite A^{G}-algebra, we have $\widehat{A}=\widehat{A^{G}} \otimes_{A^{G}} A$. On the other hand, we have $\widehat{A}=\prod_{i} \widehat{A_{\mathfrak{F}_{i}}}$. Since $\widehat{A^{G}}$ is a flat A^{G}-algebra, we have $\left.\widehat{A^{G}}=\widehat{A^{G}} \otimes_{A^{G}} A\right)^{G}$ by Lemma A.1. So we have $\widehat{A^{G}}=\left(\prod_{i} \widehat{A_{\mathfrak{p}_{i}}}\right)^{G}$. Obviously $\left(\prod_{i} \widehat{A_{\mathfrak{p}_{i}}}\right)^{G}=\left(\widehat{A_{\mathfrak{p}}}\right)^{G_{d}}$. Therefore $\left(\widehat{A_{\mathfrak{F}}}\right)^{G_{d}}=\widehat{A^{G}}$.

Lemma A.3. Let A be a noetherian local ring, let $I_{i}(i=1, \ldots, n)$ be some ideals of A, and let K_{i} be the kernel of the canonical homomorphism $\widehat{A} \rightarrow \widehat{A / I}_{i}$. If $I=I_{1} \cdots I_{n}$, then the kernel of $\widehat{A} \rightarrow \widehat{A / I}$ is $K_{1} \cdots K_{n}$.

Proof. Since A is noetherian, we have $\operatorname{ker}\left(\widehat{A} \rightarrow \widehat{A / I}_{i}\right)=\widehat{I_{i}}=I_{i} \widehat{A}$, that is $K_{i}=I_{i} \widehat{A}$. Similarly we have $\operatorname{ker}(\widehat{A} \rightarrow \widehat{A / I})=I \widehat{A}=I_{1} \cdots I_{n} \widehat{A}$. So $\operatorname{ker}(\widehat{A} \rightarrow \widehat{A / I})=K_{1} \cdots K_{n}$.

Let T be a k-scheme. Consider the Cartesian square

We have the following

Lemma A.4. Let $s: T \rightarrow X_{\mathfrak{m}} \times T$ be a section of q. Then s is a closed immersion and the closed subscheme D defined by s is a relative effective Cartier divisor on $X_{\mathfrak{m}} \times T / T$.

Proof. Since $q s=\mathrm{id}$ is a closed immersion and since q is separated, s is also a closed immersion. The closed subscheme D defined by s is flat because $q s=\mathrm{id}$. Let \mathcal{I} be the sheaf of $\mathcal{O}_{X_{\mathrm{m}} \times T}$-ideals defining D. We have an exact sequence

$$
0 \rightarrow \mathcal{I} \rightarrow \mathcal{O}_{X_{\mathrm{m}} \times T} \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

For any $t \in T$, since \mathcal{O}_{D} is \mathcal{O}_{T} flat, the following sequence is exact:

$$
0 \rightarrow \mathcal{I} \otimes_{\mathcal{O}_{T}} k(t) \rightarrow \mathcal{O}_{X_{\mathrm{n}} \times T} \otimes_{\mathcal{O}_{T}} k(t) \rightarrow \mathcal{O}_{D_{t}} \rightarrow 0
$$

where D_{t} is the fiber of $D \rightarrow T$ at t. Hence $\mathcal{I} \otimes_{\mathcal{O}_{T}} k(t)$ is the ideal defining the closed subscheme D_{t} of $q^{-1}(t) \cong X_{\mathfrak{m}}$. Obviously D_{t} defines a divisor of $X_{\mathfrak{m}}$. So for every point $x \in q^{-1}(t)$, the ideal $\mathcal{I}_{x} \otimes_{\mathcal{O}_{T}} k(t)$ of $\mathcal{O}_{X_{\mathfrak{m}} \times T, x} \otimes_{\mathcal{O}_{T, t}} k(t)$ is generated by an element which is not a zero divisor. By Nakayama's lemma, the ideal \mathcal{I}_{x} of $\mathcal{O}_{X_{\mathrm{m}} \times T, x}$ is generated by one element whose image in $\mathcal{O}_{X_{\mathrm{m}} \times T, x} \otimes_{\mathcal{O}_{T, t}} k(t)$ is not a zero divisor. By Lemma 2.3, D is a relative effective Cartier divisor.

Consider the sections

$$
s_{i}:(X-S)^{n} \rightarrow X_{\mathfrak{m}} \times(X-S)^{n}, \quad\left(P_{1}, \ldots, P_{n}\right) \mapsto\left(P_{i}, P_{1}, \ldots, P_{n}\right) .
$$

Denote the relative effective Cartier divisors defined by s_{i} also by s_{i}, and let $D=s_{1}+\cdots+s_{n}$. The relative effective Cartier divisor D can also be regarded as a closed subscheme of $X_{\mathfrak{m}} \times(X-S)^{n}$. The n-th symmetric group \mathfrak{S}_{n} acts on $(X-S)^{n}$ by permuting the factors. It acts on $X_{\mathfrak{m}} \times(X-S)^{n}$ through its action on the second factor. Obviously D is stable under this action. Let \mathcal{D} be the quotient of D by \mathfrak{S}_{n}.

PRoposition A.5.
(a) The quotient of $X_{\mathfrak{m}} \times(X-S)^{n}$ by \mathfrak{S}_{n} is $X_{\mathfrak{m}} \times(X-S)^{(n)}$.
(b) The closed immersion $D \rightarrow X_{\mathfrak{m}} \times(X-S)^{n}$ induces a closed immersion $\mathcal{D} \rightarrow X_{\mathfrak{m}} \times(X-S)^{(n)}$ and \mathcal{D} is a relative effective Cartier divisor on $\left(X_{\mathfrak{m}} \times(X-S)^{(n)}\right) /(X-S)^{(n)}$. Moreover D is the pull-back of \mathcal{D}.

Proof. (a) We have a Cartesian square

The morphism $X_{\mathfrak{m}} \times(X-S)^{(n)} \rightarrow(X-S)^{(n)}$ is flat since it is obtained from the flat morphism $X_{\mathfrak{m}} \rightarrow \operatorname{spec}(k)$ through the base extension $(X-S)^{(n)} \rightarrow \operatorname{spec}(k)$. Our assertion then follows directly from Lemma A.1.
(b) Consider the commutative diagram

One can easily show that $\mathcal{D} \rightarrow X_{\mathfrak{m}} \times(X-S)^{(n)}$ is a finite morphism and induces a homeomorphism of \mathcal{D} with a closed subset of $X_{\mathfrak{m}} \times(X-S)^{(n)}$. We are going to show that for any point $y \in \mathcal{D}$, the homomorphism $\mathcal{O}_{X_{\mathrm{m}} \times(X-S)^{(n)}, y} \rightarrow \mathcal{O}_{\mathcal{D}, y}$ is surjective and the homomorphism $\mathcal{O}_{(X-S)^{(n)}, t} \rightarrow \mathcal{O}_{\mathcal{D}, y}$ is flat, where t is the image of y in $(X-S)^{(n)}$. If this is done, then $\mathcal{D} \rightarrow X_{\mathfrak{m}} \times(X-S)^{(n)}$
is a closed immersion and $\mathcal{D} \rightarrow(X-S)^{(n)}$ is flat. Obviously the fibers of $\mathcal{D} \rightarrow(X-S)^{(n)}$ are effective divisors. As in the proof of Lemma A.4, one can then use Nakayama's lemma and Lemma 2.3 to show that \mathcal{D} is a relative effective Cartier divisor.

One can show that

$$
\widehat{\mathcal{O}}_{\mathcal{D}, y} \cong \mathcal{O}_{\mathcal{D}, y} \otimes_{\mathcal{O}_{X_{\mathrm{m}} \times(X-S)}(n), y} \widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{(n)}, y} .
$$

Note that $\widehat{\mathcal{O}}_{X_{\mathfrak{m}} \times(X-S)^{(n)}, y}$ is a faithfully flat $\mathcal{O}_{X_{\mathfrak{m}} \times(X-S)^{(n)}, y \text {-algebra. Thus to }}$ show that $\mathcal{O}_{X_{\mathrm{m}} \times(X-S)^{(n)}, y} \rightarrow \mathcal{O}_{\mathcal{D}, y}$ is surjective, it is enough to show that $\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{(n)}, y} \rightarrow \widehat{\mathcal{O}}_{\mathcal{D}, y}$ is surjective; and to show that $\mathcal{O}_{(X-S)^{(n)}, t} \rightarrow \mathcal{O}_{\mathcal{D}, y}$ is flat, it is enough to show that $\widehat{\mathcal{O}}_{(X-S)^{(n)}, t} \rightarrow \widehat{\mathcal{O}}_{\mathcal{D}, y}$ is flat.

Assume $t=n_{1} P_{1}+\cdots+n_{l} P_{l} \in(X-S)^{(n)}$, where the P_{i} are distinct points of $X-S, n_{i}>0$ and $\sum_{i} n_{i}=n$. Then $y=\left(P_{i_{0}}, t\right) \in X_{\mathfrak{m}} \times(X-S)^{(n)}$ for some $i_{0} \in\{1, \ldots, l\}$. Let $t^{\prime}=\left(P_{1}, \ldots, P_{1}, \ldots, P_{l}, \ldots, P_{l}\right) \in(X-S)^{n}$, where the first n_{1} components of t^{\prime} are P_{1}, \ldots, and the last n_{l} components are P_{l}. The point t^{\prime} is a point in $(X-S)^{n}$ lying over $t \in(X-S)^{(n)}$. Let y^{\prime} be the point $\left(P_{i_{0}}, t^{\prime}\right)$ in $X_{\mathfrak{m}} \times(X-S)^{n}$. It lies over y. Note that y^{\prime} is also a point in D. With respect to the actions of \mathfrak{S}_{n} on $(X-S)^{n}$, on $X_{\mathfrak{m}} \times(X-S)^{n}$, and on D, the decomposition groups at $t^{\prime} \in(X-S)^{n}$, at $y^{\prime} \in X_{\mathfrak{m}} \times(X-S)^{n}$, and at $y^{\prime} \in D$ are all $\mathfrak{S}_{n_{1}} \times \cdots \times \mathfrak{S}_{n_{l}}$. We have

$$
\widehat{\mathcal{O}}_{(X-S)^{n}, t} \cong k\left[\left[x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{l n_{l}}\right]\right],
$$

and the decomposition group $\mathfrak{S}_{n_{1}} \times \cdots \times \mathfrak{S}_{n_{l}}$ acts on $\widehat{\mathcal{O}}_{(X-S)^{n}, t}$ by permuting $x_{i 1}, \ldots, x_{i n_{i}}$ for each i. We have

$$
\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{n}, y^{\prime}} \cong k\left[\left[x, x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{\left[n_{l}\right.}\right]\right]
$$

and the decomposition group $\mathfrak{S}_{n_{1}} \times \cdots \times \mathfrak{S}_{n_{l}}$ acts on $\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{n}, y^{\prime}}$ by fixing x and permuting $x_{i 1}, \ldots, x_{i n_{i}}$ for each i.

For each $i \in\left\{n_{1}+\cdots+n_{i_{0}-1}+1, \ldots, n_{1}+\cdots+n_{i_{0}}\right\}$, the section

$$
s_{i}:(X-S)^{n} \rightarrow X_{\mathfrak{m}} \times(X-S)^{n}, \quad\left(P_{1}, \ldots, P_{n}\right) \mapsto\left(P_{i}, P_{1}, \ldots, P_{n}\right)
$$

induces a homomorphism

$$
\widehat{\mathcal{O}}_{X_{\mathfrak{m}} \times(X-S)^{n}, y^{\prime}} \rightarrow \widehat{\mathcal{O}}_{(X-S)^{n}, t^{\prime}} .
$$

Through the isomorphism

$$
\widehat{\mathcal{O}}_{X_{\mathrm{n}} \times(X-S)^{n}, y^{\prime}} \cong k\left[\left[x, x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{l n_{l}}\right]\right]
$$

and the isomorphism

$$
\widehat{\mathcal{O}}_{(X-S)^{n}, t^{\prime}} \cong k\left[\left[x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{l n_{1}}\right]\right]
$$

this homomorphism induced by s_{i} is

$$
\left.\begin{array}{rl}
k\left[\left[x, x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{l n_{l}}\right]\right] & \rightarrow k\left[\left[x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{l n_{l}}\right]\right] \\
x & \mapsto x_{i_{0} j}, x_{\alpha \beta}
\end{array}\right) x_{\alpha \beta} \quad\left(\alpha=1, \ldots, l, \beta=1, \ldots, n_{\alpha}\right), ~ \$
$$

where $j \in\left\{1, \ldots, n_{i_{0}}\right\}$ is uniquely determined by $n_{1}+\cdots+n_{i_{0}-1}+j=i$. The kernel of this homomorphism is the ideal $\left(x-x_{i j j}\right)$. By Lemma A.3, the kernel of the homomorphism $\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{n}, y^{\prime}} \rightarrow \widehat{\mathcal{O}}_{D, y^{\prime}}$ is identified with the ideal $\left(\prod_{j=1}^{n_{i 0}}\left(x-x_{i_{0} j}\right)\right)$ through the isomorphism

$$
\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{n}, y^{\prime}} \cong k\left[\left[x, x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{l n_{1}}\right]\right] .
$$

Hence

$$
\widehat{\mathcal{O}}_{D, y^{\prime}} \cong k\left[\left[x, x_{11}, \ldots, x_{1 n_{1}}, \ldots, x_{l 1}, \ldots, x_{l n_{l}}\right]\right] /\left(\prod_{j=1}^{n_{0}}\left(x-x_{i_{0} j}\right)\right)
$$

and the decomposition group $\mathfrak{S}_{n_{1}} \times \cdots \times \mathfrak{S}_{n_{l}}$ acts on $\widehat{\mathcal{O}}_{D, y^{\prime}}$ by fixing x and permuting $x_{i 1}, \ldots, x_{i n_{i}}$ for each i. Let $\sigma_{i 1}, \ldots, \sigma_{i n_{i}}$ be the elementary symmetric functions in $x_{i 1}, \ldots, x_{i n_{i}}$. By Lemma A.2, we have

$$
\begin{gathered}
\widehat{\mathcal{O}}_{\mathcal{D}, y} \cong k\left[\left[x, \sigma_{11}, \ldots, \sigma_{1 n_{1}}, \ldots, \sigma_{l 1}, \ldots, \sigma_{l n_{l}}\right]\right] /\left(\prod_{j=1}^{n_{i_{0}}}\left(x-x_{i_{0} j}\right)\right) \\
\widehat{\mathcal{O}}_{X_{\mathfrak{m}} \times(X-S)^{(n), y}} \cong k\left[\left[x, \sigma_{11}, \ldots, \sigma_{1 n_{1}}, \ldots, \sigma_{l 1}, \ldots, \sigma_{l n_{l}}\right]\right] \\
\widehat{\mathcal{O}}_{(X-S)^{(n)}, t} \cong k\left[\left[\sigma_{11}, \ldots, \sigma_{1 n_{1}}, \ldots, \sigma_{l 1}, \ldots, \sigma_{l n_{l}}\right]\right]
\end{gathered}
$$

Now it is easy to see that $\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{(n)}, y} \rightarrow \widehat{\mathcal{O}}_{\mathcal{D}, y}$ is surjective and $\widehat{\mathcal{O}}_{(X-S)^{(n)}, t} \rightarrow \widehat{\mathcal{O}}_{\mathcal{D}, y}$ is flat. This proves \mathcal{D} is a relative effective Cartier divisor. We also have

$$
\widehat{\mathcal{O}}_{D, y^{\prime}}=\widehat{\mathcal{O}}_{\mathcal{D}, r} \widehat{\otimes}_{\hat{\mathcal{O}}_{(X-S)}(n), t} \widehat{\mathcal{O}}_{(X-S)^{n}, t^{\prime}}
$$

This implies that $D=\mathcal{D} \times_{(X-S)^{(n)}}(X-S)^{n}$, that is, D is the pull-back of \mathcal{D}. This completes the proof of the proposition.

The relative effective Cartier divisor \mathcal{D} is the universal relative effective Cartier divisor.

Lemma A.6. Let T be a k-scheme and let $s_{i}: T \rightarrow X_{\mathfrak{m}} \times T(i=1, \ldots, n)$ be some sections of the projection $q: X_{\mathfrak{m}} \times T \rightarrow T$. Assume the images of s_{i} lie in $\left(X_{\mathfrak{m}}-Q\right) \times T$. Then there is a unique morphism of schemes $f: T \rightarrow(X-S)^{(n)}$ such that the pull-back by $\mathrm{id} \times f$ of the universal relative effective Cartier divisor \mathcal{D} to $X_{\mathfrak{m}} \times T$ is $s_{1}+\cdots+s_{n}$.

Proof. Let $p: X_{\mathfrak{m}} \times T \rightarrow X_{\mathfrak{m}}$ be the projection. The morphisms $p s_{i}: T \rightarrow X_{\mathfrak{m}}$ induce $\left(p s_{1}, \ldots, p s_{n}\right): T \rightarrow X_{\mathfrak{m}}^{n}$. Since the images of s_{i} lie in $\left(X_{\mathfrak{m}}-Q\right) \times T$, we actually get a morphism $\left(p s_{1}, \ldots, p s_{n}\right): T \rightarrow(X-S)^{n}$. Composing with the canonical morphism $(X-S)^{n} \rightarrow(X-S)^{(n)}$, we get $f: T \rightarrow(X-S)^{(n)}$ so that the pull-back of \mathcal{D} by id $\times f$ is $s_{1}+\cdots+s_{n}$. This proves the existence of f.

To prove the uniqueness of f, we first note that $f: T \rightarrow(X-S)^{(n)}$ is uniquely determined as a map on the underlying topological space. Indeed, for every point $t \in T, f(t)$ is necessarily the point in $(X-S)^{(n)}$ corresponding to the effective divisor $\left(s_{1}+\cdots+s_{n}\right)_{t}$ on $q^{-1}(t)=X_{m}$. To prove f is unique as a morphism of schemes, it is enough to prove that the homomorphism on local rings $\mathcal{O}_{(X-S)^{(n)}, f(t)} \rightarrow \mathcal{O}_{T, t}$ induced by f is uniquely determined. It suffices to prove that $\widehat{\mathcal{O}}_{(X-S)^{(n)}, f(t)} \rightarrow \widehat{\mathcal{O}}_{T, t}$ is uniquely determined.

Consider the commutative diagram

where D is the closed subscheme of $X_{\mathfrak{m}} \times T$ corresponding to the divisor $s_{1}+\cdots+s_{n}$. Let $A=\widehat{\mathcal{O}}_{T, t}$, let $z \in D$ be a point lying over $t \in T$, and let $y \in \mathcal{D}$ be the image of z. We have $\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times T, z} \cong A[[x]]$.

Without loss of generality, assume

$$
\begin{gathered}
p s_{1}(t)=\cdots=p s_{n_{1}}(t)=P_{1} \\
p s_{n_{1}+1}(t)=\cdots=p s_{n_{1}+n_{2}}(t)=P_{2} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+\cdots \\
p s_{n_{1}+\cdots+n_{l-1}+1}(t)=\cdots=p s_{n_{1}+\cdots+n_{l}}(t)=P_{l}
\end{gathered}
$$

where $n_{i}>0(i=1, \ldots, l), n_{1}+\cdots+n_{l}=n$, and the P_{i} are distinct points in $X-S$. Then we have $z=\left(P_{i_{0}}, t\right) \in X_{\mathfrak{m}} \times T$ for some $i_{0} \in\{1, \ldots, l\}$.

For each $i \in\left\{n_{1}+\cdots+n_{i_{0}-1}+1 \ldots n_{1}+\cdots+n_{i_{0}}\right\}$, the section s_{i} induces a homomorphism $\widehat{\mathcal{O}}_{X_{\mathrm{m}} \times T .=} \rightarrow \widehat{\mathcal{O}}_{T . t}$, i.e., $A[|x|] \rightarrow A$. Denote the image of x under this homomorphism by $a_{i_{i, j} j}$, where $j \in\left\{1 \ldots \ldots n_{i_{u}}\right\}$ is uniquely determined by $n_{1}+\cdots+n_{i_{0}-1}+j=i$. Then by Lemma A.3. we have

$$
\widehat{\mathcal{O}}_{D .:} \cong A[[x]] /\left(\prod_{j=1}^{n_{t i v}}\left(x-a_{i, j}\right)\right) .
$$

Keep the notations in the proof of Proposition A.5. We have

$$
\begin{aligned}
& \widehat{\mathcal{O}}_{\mathcal{D}, y} \cong k\left[\left[x, \sigma_{11} \ldots \ldots \sigma_{\mid n_{1}} \ldots \ldots \sigma_{l \mid} \ldots \ldots \sigma_{l l_{j}} \|\right] /\left(\prod_{j=1}^{n_{i n}}\left(x-x_{i, j}\right)\right) .\right. \\
& \widehat{\mathcal{O}}_{X_{\mathrm{m}} \times(X-S)^{(n)} \cdot .,} \cong k\left[\left[x, \sigma_{11} \ldots \ldots \sigma_{1 n_{1}} \ldots \ldots \sigma_{11} \ldots . \sigma_{l n_{i}} \| .\right.\right. \\
& \widehat{\mathcal{O}}_{(X-S)^{(n)}: f(t)} \cong k\left[\left[\left[\sigma_{11} \ldots . \sigma_{1 n_{1}} \ldots \ldots \sigma_{l \mid} \ldots \sigma_{l n}\right] \mid .\right.\right.
\end{aligned}
$$

We have a commutative diagram

It is isomorphic to

$$
\begin{aligned}
& A[[x]] /\left(\prod_{j=1}^{n_{i_{0}}}\left(x-a_{i_{4} j}\right)\right) \longleftarrow k\left[\left[x . \sigma_{11} \ldots \ldots \sigma_{\mid n_{1}} \ldots \ldots \sigma_{l \mid} \ldots . \sigma_{l n_{l} \mid}\right] /\left(\prod_{j=1}^{n_{t_{1}}}\left(x-x_{\left.t_{(1,}\right)}\right)\right)\right. \\
& A[[x]] \quad \longleftarrow \\
& \uparrow \\
& A \quad k\left[\left[\sigma_{11}, \ldots \sigma_{1 n_{1}} \ldots . \sigma_{l 1} \ldots . \sigma_{n_{l}}\right]\right] \text {. }
\end{aligned}
$$

In order for this last diagram to commute, it is necessary that $\prod_{j=1}^{n_{i 0}}\left(x-x_{i_{0} j}\right)$ be mapped to $\prod_{j=1}^{n_{i 0}}\left(x-a_{i 0 j}\right)$ under the homomorphism

$$
k\left[\left[x, \sigma_{11}, \ldots, \sigma_{1 n_{1}}, \ldots, \sigma_{l 1}, \ldots, \sigma_{n_{l}}\right]\right] \rightarrow A[[x]] .
$$

So the image of $\sigma_{i_{0} j}$ under the homomorphism

$$
k\left[\left[\sigma_{11}, \ldots, \sigma_{1 n_{1}}, \ldots, \sigma_{l 1}, \ldots, \sigma_{l n_{l}}\right]\right] \rightarrow A
$$

is necessarily the value at $\left(a_{i_{0} 1}, \ldots, a_{i_{0} n_{i_{0}}}\right)$ of $\sigma_{i_{0} j}$ considered as a function on $A^{n_{i 0}}$. We see that this is true for any indices i_{0} and j if we let z go over the points in D above t. Therefore the homomorphism $k\left[\left[\sigma_{11}, \ldots, \sigma_{1 n_{1}}, \ldots, \sigma_{l 1}, \ldots, \sigma_{l n_{l}}\right]\right] \rightarrow A$ is uniquely determined, that is, the homomorphism $\widehat{\mathcal{O}}_{\left.(X-S)^{(n)}\right) f(t)} \rightarrow \widehat{\mathcal{O}}_{T, t}$ is uniquely determined. This concludes the proof of the lemma.

LEmmA A.7. Let T be a k-scheme and let D be a relative effective Cartier divisor on $\left(X_{\mathfrak{m}} \times T\right) / T$ supported on $\left(X_{\mathfrak{m}}-Q\right) \times T$ with degree n. Then there exist a flat morphism $T^{\prime} \rightarrow T$ and sections $s_{i}: T^{\prime} \rightarrow X_{\mathfrak{m}} \times T^{\prime}$ $(i=1, \ldots, n)$ of the projection $X_{\mathfrak{m}} \times T^{\prime} \rightarrow T^{\prime}$ such that the pull-back of D to $X_{\mathfrak{m}} \times T^{\prime}$ is equal to $s_{1}+\cdots+s_{n}$.

Proof. By the definition of relative effective Cartier divisors, D is flat over T. On the other hand, $D \rightarrow T$ is proper and has finite fibers. So D is finite over T by [EGA] III, §4.4.2. Take $T_{1}=D$. Then we have a finite flat morphism $T_{1} \rightarrow T$. Consider the commutative diagram

Let $\Delta: D \rightarrow D \times_{T} D=D \times_{T} T_{1}$ be the diagonal map. It is a closed immersion since the morphism $q i$ is separated. Take $s_{1}=i^{\prime} \Delta$. This is a section of q^{\prime}. Hence it defines a relative effective Cartier divisor on $\left(X_{\mathfrak{m}} \times T_{1}\right) / T_{1}$. The pull-back D_{1} of the relative effective Cartier divisor D to $X_{\mathfrak{m}} \times T_{1}$ is the closed subscheme defined by i^{\prime}. Let $\mathcal{I}_{D_{1}}$ and \mathcal{I}_{s} be the ideal sheaves of the
closed subschemes defined by i^{\prime} and s_{1}, respectively. Since s_{1} factors through i^{\prime}, we have $\mathcal{I}_{D_{1}} \subset \mathcal{I}_{s}$. Hence $D_{1}-s$ is a relative effective Cartier divisor on $\left(X_{\mathfrak{m}} \times T_{1}\right) / T_{1}$ by Lemma 2.2 (b), that is, there exists a relative effective Cartier divisor $D_{1}{ }^{\prime}$ such that $D_{1}=s_{1}+D_{1}{ }^{\prime}$. Now we take $T_{2}=D_{1}{ }^{\prime}$. We then have a finite flat morphism $T_{2} \rightarrow T_{1}$, a section $s_{2}: T_{2} \rightarrow X_{\mathfrak{m}} \times T_{2}$ of the projection $X_{\mathfrak{m}} \times T_{2} \rightarrow T_{2}$, and a relative effective Cartier divisor $D_{2}{ }^{\prime}$ on $\left(X_{\mathfrak{m}} \times T_{2}\right) / T_{2}$ such that the pull-back of $D_{1}{ }^{\prime}$ to $X_{\mathfrak{m}} \times T_{2}$ is equal to $s_{2}+D_{2}{ }^{\prime}$. Then we take $T_{3}=D_{2}{ }^{\prime}, \ldots$. In this way we get finite flat morphisms $T_{i} \rightarrow T_{i-1}$ $(i=1, \ldots, n)$, sections $s_{i}: T_{i} \rightarrow X_{\mathfrak{m}} \times T_{i}$, such that the pull-back of D to $X_{\mathfrak{m}} \times T_{n}$ is equal to $s_{1}+\cdots+s_{n}$, where the s_{i} denote the relative effective Cartier divisors on $\left(X_{\mathfrak{m}} \times T_{n}\right) / T_{n}$ induced by the sections s_{i}. This proves our lemma.

Finally we are ready to prove Proposition 3.1.
Proof of Proposition 3.1. By Lemma A.7, there exist a finite flat morphism $\pi: T^{\prime} \rightarrow T$ and sections $s_{i}: T^{\prime} \rightarrow X_{\mathfrak{m}} \times T^{\prime}(i=1 \ldots . n)$ of the projection $X_{\mathrm{m}} \times T^{\prime} \rightarrow T^{\prime}$ such that the pull-back $\pi^{*} D$ of D to $X_{\mathfrak{m}} \times T^{\prime}$ is equal to $s_{1}+\cdots+s_{n}$. By Lemma A.6, there exists a unique morphism of schemes $f^{\prime}: T^{\prime} \rightarrow(X-S)^{(n)}$ such that the pull-back $f^{\prime *} \mathcal{D}$ of the universal relative effective Cartier divisor \mathcal{D} to $X_{\mathfrak{m}} \times T^{\prime}$ is $s_{1}+\cdots+s_{n}$. Let $p_{1} . p_{2}: T^{\prime} \times_{T} T^{\prime} \rightarrow T^{\prime}$ be the projections. We have
$\left(f^{\prime} p_{1}\right)^{*}(\mathcal{D})=p_{1}^{*} f^{\prime *} \mathcal{D}=p_{1}^{*}\left(s_{1}+\cdots+s_{n}\right)=p_{1}^{*} \pi^{*} D=p_{2}^{*} \pi^{*} D=\ldots=\left(f^{\prime} p_{2}\right)^{*}(\mathcal{D})$.
that is, $\left(f^{\prime} p_{1}\right)^{*}(\mathcal{D})=\left(f^{\prime} p_{2}\right)^{*}(\mathcal{D})$. By Lemma A. 6 we have $f^{\prime} p_{1}=f^{\prime} p_{2}$. By the theory of descent, ([SGA 1] VIII, Theorem 5.2), there exists a unique morphism of schemes $f: T \rightarrow\left(X_{\mathfrak{m}}-Q\right)^{(n)}$ such that $f^{\prime}=f \pi$, and the pull-back of \mathcal{D} to $X_{\mathfrak{m}} \times T$ is D.

REFERENCES

[A] Artin, M. Néron Models. Arithmetic Geometry, edited by Cornell and Silverman, Springer-Verlag, 1986.
[BLR] Bosch, S., W. LÜTkEbOHMERT and M. Raynaud. Néron Models. SpringerVerlag, 1990.
[EGA] Grothendieck, A. Éléments de Géométrie Algébrique (rédigés avec la collaboration de J. Dieudonné). Chap. 0 à IV. Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).
[SGA 1] Revêtements étales et groupe fondamental. Lecture Notes in Mathematics 224, Springer-Verlag, 1971.

