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ON THE CONSTRUCTION OF GENERALIZED JACOBIANS 41
APPENDIX: PROOF OF PROPOSITION 3.1

We start with some lemmas.

LEMMA A.1. Let A be a commutative ring with identity on which a finite
group G acts, let AY be the invariant subring, and let B be a flat A% -algebra.
Then G acts on B ®4c A through its action on the second factor and the
invariant subring of this action is B.

Proof. We have an exact sequence
0-A4%—>A— ][4,
getG

where [] A is the direct product of |G| copies of A, and A — [] A is
geG geG

defined by a — (ga —a). Since B is a flat A®-algebra, the tensor product of
B with the above sequence remains exact, that is, the sequence
0—B—B®@iA— || BRA
geaG
is exact. Hence B = (B ®40 A)C.

Let A be a finitely generated k-algebra on which a finite group G acts.
Then A is finite over AY. For every prime ideal q of A, let py,...,p, be
all the prime ideals of A lying over g. It is known that G acts transitively

on {pi,...,pn}. Fixa p€{p1,...,p.}. Let Go={g€ G| gp =p} be the
decomposition group at .

LEMMA A.2. Notatmn as above. Let AG be the completion of the local
ring AGq and let A be the completion of z‘he local ring A,. Then G, acts
on A and (A, A, )G —AG

Proof. Since A%, is a flat A%-algebra, we have (A%, ®40A)° = AC, by
Lemma A.l. Replacing A by AGq ®4c A 1f necessary, we may thus assume
that AY is a local ring and g is the maximal ideal of AC.

Let A be the completion of A with respect to the gA-adic topology. Since
A 1s a finite AG—algebra we have A = AG ®asc A. On the other hand we
have A = HAp Since AC is a flat AC -algebra, we have AG — (AG ®40 A)C

by Lemma A.l. So we have AC — (TTA,)¢. Obviously (1A,)C = @A,)%.

Therefore (A,)0 = AG.



42 LEI FU

LEMMA A.3. Let A be a noetherian local ring, let I; (i =1,...,n) be
some ideals of A, and let K; be the kernel of the canonical homomorphlsm
A —>A/I If I=1 -1, then the kernel of A ——»A/I is Ki---K,.

——

Proof. Since A is noetherian, we have ker(A — A/I) =
that 1s K; = LA. Similarly we have ker(A — A/I) — JA = I - 2
ket(A — A/D) =K, - K,.

LA,
So

Let T be a k-scheme. Consider the Cartesian square

Xy XT —— Xn

') l

T —— spec(k) .

We have the following

LEMMA A4. Let s: T — X X T be a section of q. Then s is a closed
immersion and the closed subscheme D defined by s is a relative effective
Cartier divisor on X x T/T.

Proof. Since gs=id is a closed immersion and since ¢ is separated, s
is also a closed immersion. The closed subscheme D defined by s is flat
because gs=id. Let Z be the sheaf of Oy _«r-ideals defining D. We have an
exact sequence

O——>I—>Oxm><T*—>OD—>O.

For any ¢t € T, since Op is Or flat, the following sequence is exact:
0— 1o, k() = Ox,, x1r ®o, k(t) — Op, — 0,

where D; is the fiber of D — T at t. Hence Z ®p, k(t) is the ideal defining
the closed subscheme D, of ¢~ !(¢) = X,,. Obviously D, defines a divisor of
X . So for every point x € g~'(), the ideal Z, ®o, k(1) of Ox,, x1.®0, k()
is generated by an element which is not a zero divisor. By Nakayama’s
lemma, the ideal Z, of Oy, xrr 18 generated by one element whose image
in Oy, x1x ®o,, k(t) is not a zero divisor. By Lemma 2.3, D is a relative
effective Cartier divisor.
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Consider the sections
it (X —=8)"—=Xu xX=9", (Pi,....,P)— (Pi,P1,....,Py).

Denote the relative effective Cartier divisors defined by s; also by s;, and let
D = s, +---+s,. The relative effective Cartier divisor D can also be regarded
as a closed subscheme of X, x (X —S8)". The n-th symmetric group &, acts
on (X — )" by permuting the factors. It acts on Xy, x (X — S)" through its
action on the second factor. Obviously D is stable under this action. Let D
be the quotient of D by &G,,.

PROPOSITION A.S5.
(a) The quotient of Xm X (X — 8" by &, is Xm X (X — S)W.
(b) The closed immersion D — Xy, X (X — 8)" induces a closed immersion

D — Xn X (X — W and D is a relative effective Cartier divisor on
Xm X (X = ) /(X — $). Moreover D is the pull-back of D.

Proof. (a) We have a Cartesian square

Xy XX =8)" —— X x (X — S)(n)

| l

X-85" — X-=-5",

The morphism X, x (X — ) — (X —S)" is flat since it is obtained from the
flat morphism X, — spec(k) through the base extension (X —S$)" — spec(k).
Our assertion then follows directly from Lemma A.1.

(b) Consider the commutative diagram

D _— D

l l

X XX =8)" —— X X (X = 85®

l l

X-8 — X-85",

One can easily show that D — X, x (X — 5" is a finite morphism and induces
a homeomorphism of D with a closed subset of X X (X =5 . We are going
to show that for any point y € D, the homomorphism Ox o xx—sim y — Op
is surjective and the homomorphism Ow—sym, — Op, is flat, where ¢ is
- the image of y in (X — S)(”) If this is done, then D — X, x (X — §)@
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is a closed immersion and D — (X — S)™ is flat. Obviously the fibers of
D — (X —S)™ are effective divisors. As in the proof of Lemma A.4, one
can then use Nakayama’s lemma and Lemma 2.3 to show that D is a relative -
effective Cartier divisor.
One can show that

~

%) -
OD;Y - OID:)’ ®0Xm><(X—S)(”),y OXm X(X_S)(”)7y '

Note that Oy, x_sm, is a faithfully flat Oy y_sm.,-algebra. Thus to
show that Oy yx-smy — Op, is surjective, it is enough to show that
@\me(x__g)(n),y — @p,y is surjective; and to show that O _gmw , — Op,, is
flat, it is enough to show that @(X_S)(W — @p,y is flat.

Assume t = n Py +---+mP; € (X —S)™, where the P; are distinct points
of X—S, n; >0 and > n; = n. Then y = (P;,,t) € X, x (X — 8@ for

some ip € {1,...,0}. Let ¢ =(Py,...,P1,...,P,,....,P) € (X —S)", where
the first n; components of ¢ are P;, ..., and the last n; components are P;.
The point ¢ is a point in (X — S)* lying over ¢t € (X — S)". Let y' be the
point (P;,,t') in Xy X (X —S)". It lies over y. Note that y’ is also a point
in D. With respect to the actions of &, on (X —S)*, on X;;, X (X —S5)", and
on D, the decomposition groups at ' € (X — )", at y € X, x (X —5)", and
at y € D are all &, x --- x &,,. We have

O(X—S)”,t = k[[xn, “w oW ,xlm gooo sy X1y oo ,xlm]] ,

and the decomposition group &, x---x &, acts on @(X_ sy by permuting
Xil, - - -, Xin, for each i. We have

Ox, xx—syy = kX, X115 X1ny s oo o3 X1y -+ oy Ximg 1]

and the decomposition group &,, X ---x &, acts on @Xm x(X—Sy.y by fixing
x and permuting Xx;i,...,X;, for each i. '
For each i € {n; +---+mnjy_1+1,...,n +---+n;}, the section

st X=8)"—=XpuxX-9", (P,...,P)— (P,P,...,P,)
induces a homomorphism
Oxt xx=3,y — O—sy,ur
Through the isomorphism
6Xn1X(X_S)n’y/ kL[, X115 ooy XDy e e s XLy« - - s Xy )]

and the isomorphism
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O(X—S)”,I" = k[[xlla cee s Xy e e y XIlsy -+ - ;xlm]] )
this homomorphism induced by s; is

KD, X100 e s Xlpys o e s XaLy - - o X ] — KLX11, o Xy oo s XL s X 115

X F Xigj, Xaf " Xap (a=1,...,1, =1,...,n4),

where j € {1,...,n;} is uniquely determined by nj + -+ Rig—1 T J =
The kernel of thls homomorphism is the ideal (x — xjy)- By Lemma A.3, the
kernel of the homomorphism C)me(x Sy = (’)D\ is identified with the

nj,

ideal (H(x — x,-oj)> through the isomorphism
=1

Ome(X sy RLX, X115 Xy oo XiLy - X 1]

Hence

ni,

= k[[x Xily v sXlngs-- s s XI5+ » xm,]]/ H(x — xi@j)) :
=1

and the decomposition group &, x --- x &, acts on Op, by fixing x
and permuting Xx,...,Xp for each i. Let oy,..., , 0, be the elementary
symmetric functions in x;, ..., X, . By Lemma A.2, we have

Riy
Opy Zk[[x.011, s Oty o011, oo Ol /(H(x x,oj)>

Xm X (X—=85) y = k[[x: OllyeveesO0lnyse-3005 00+ O/m]]:

Ox—syon s Zkllor1, .0y 500, ol

Now it is easy to see that Oy s x—_sw, — Op, 1is surjective and
Ox_sm, — Op, is flat. This proves D is a relative effective Cartier divisor.
We also have

Op,y = Op,y®; Ox—sy 1 -

(X—S)U0)

This implies that D = D Xx_gw (X —8)", that is, D is the pull-back of D.
This completes the proof of the proposition.

The relative effective Cartier divisor D is the universal relative effective
Cartier divisor.
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LEMMA A.6. Let T be a k-scheme and let s;: T — Xz XT (i=1,...,n)
be some sections of the projection q: Xo XT — T. Assume the images of s; lie
in (Xm —Q)XT. Then there is a unique morphism of schemes f: T — (X —S)™
such that the pull-back by id x f of the universal relative effective Cartier
divisor D to Xeo XT is 51+ -+ 5,.

Proof. Let p: Xy x T — X, be the projection. The morphisms
psi: T — Xy induce (psi,...,ps,): T — X . Since the images of s; lie
in (X, — Q) x T, we actually get a morphism (psy,...,ps,): T — (X —35)".
Composing with the canonical morphism (X — S)" — (X — S™, we get
f:T— (X—9S)" so that the pull-back of D by id x f is sy +---+s,. This
proves the existence of f.

To prove the uniqueness of f, we first note that f: T — (X — S)™ is
uniquely determined as a map on the underlying topological space. Indeed,
for every point t € T, f(¢) is necessarily the point in (X —S)®™ corresponding
to the effective divisor (s; +---+s,); on ¢~ '(f) = X,,. To prove f is unique
as a morphism of schemes, it is enough to prove that the homomorphism
on local rings Oy _gm. ) fly) Or, induced by f is uniquely determined. It
suffices to prove that O(X Sym. f(5) OT, 1s uniquely determined.

Consider the commutative diagram

D — D

l l

X X T — X X (X — 5™

J l

T L) (X — S)(n) :

where D is the closed subscheme of X, X T corresponding to the divisor
s1+ -+ s,. Let A= (57’,, let z € D be a point lying over t € T, and let
y € D be the image of z. We have (’)meTZ = Al[x]].

Without loss of generality, assume

psi(t) = - =psy, (t) = Py,
pSm-l—l(t) - :pS}’l]-{—nz(I) == P2 5
psn|+---+n1_1+1(t) == psm—{—'--—{—l’l[(t) — Pl?
where n; >0 (i=1,...,), ny+---+n; =n, and the P; are distinct points

in X —S. Then we have z = (P;,,t) € Xnn X T for some ip € {1,...,[}.
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\

For each i € {n; + - 4+ mj,— + 1..... ny + -+ n;,}. the section s;
induces a homomorphism @mer,: — (5“. ie., Allx]] — A. Denote the
image of x under this homomorphism by «;,;. where j € {I..... ni,}ois
uniquely determined by n; 4+ --- +n;,—; +j = . Then by Lemma A.3. we
have

II,“

Op.. = A[L\‘l]/(H(.r — cm,-)) :
j=1

Keep the notations in the proof of Proposition A.5. We have

O(X_S)(m.f(,) g k[[gll ..... (7],” ..... (7[] ..... U[”J ” .

We have a commutative diagram

Ox xT.z ° - O.\'mx(.\'—.S')"“.v\‘

T T

OT.[ — O(‘Y_S]un:,‘(,) .
It is isomorphic to

My

A[[\]]/ (III_I:([)I(\ — aiui)> — /\'[[.\‘. Te ... Tlnpvv- - TNenn.. O’{,,,”/ ( H (v — Ko ))
J= =

J= 1

T T
| |
| 1

A[[,\]] — /([[.\'.O']] ..... O’|,,,

T T

!
| |
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}’L,'O
In order for this last diagram to commute, it is necessary that [](x — x;)
j=1
l’l,'o
be mapped to [](x — a;,) under the homomorphism
j=1
k[[X,Ull, c 5 O0lnyy o500y - - - 7Jn1]] - A[[X]] .
So the image of o;,; under the homomorphism
k[[alla“ 5 O01ngy 5001y - - '7Uln/]] — A
is necessarily the value at (g, ... >aion,-0) of 0y, considered as a func-

tion on A" . We see that this is true for any indices iy and j if we
let z go over the points in D above t. Therefore the homomorphism
klloi1, ..., 01, NP Jln,]] — A 1s uniquely determined, that is, the
homomorphism O(x S f5y Orr 1s uniquely determined. This concludes
the proof of the lemma.

LEMMA A.7. Let T be a k-scheme and let D be a relative effective
Cartier divisor on (Xy X T)/T supported on (Xy — Q) X T with degree n.
Then there exist a flat morphism T' — T and sections s;: T' — Xy X T’
(i=1,...,n) of the projection Xy X T' — T’ such that the pull-back of D
to Xpo X T is equal to s; + -+ s,.

Proof. By the definition of relative effective Cartier divisors, D is flat
over T. On the other hand, D — T is proper and has finite fibers. So D is
finite over 7 by [EGA] III, §4.4.2. Take 77 = D. Then we have a finite flat
morphism 7} — T. Consider the commutative diagram

P’

DXTT1—> D

gt i

X xT] —2— Xy X T ——— X

q q l

D=T, _Z T ——— spec(k) .

Let A: D — DxyD = D X7 T; be the diagonal map. It is a closed immersion
since the morphism ¢i is separated. Take s; = i’A. This is a section of ¢'.
Hence it defines a relative effective Cartier divisor on (Xy, x T})/T,. The
pull-back D; of the relative effective Cartier divisor D to Xy, X T 1is the
closed subscheme defined by /. Let Zp, and Z; be the ideal sheaves of the
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closed subschemes defined by i and s, respectively. Since s; factors through
i', we have Zp, C Z;. Hence D; — s is a relative effective Cartier divisor on
(Xm x Ty)/T; by Lemma 2.2 (b), that is, there exists a relative effective Cartier
divisor D;’ such that D; = s; +D,’. Now we take 7> = D;’. We then have
a finite flat morphism 7> — T, a section s,: 7> — X, X T> of the projection
Xm X T» — T>, and a relative effective Cartier divisor D>’ on (X X T2)/T>
such that the pull-back of D’ to X, x T» is equal to s, + D,’. Then we
take 75 = D,’..... In this way we get finite flat morphisms 7; — T;_;
(i=1.....n), sections s;: T; — X, x T;, such that the pull-back of D to
Xm X T, 1s equal to s; + --- 4+ s,, where the s; denote the relative effective
Cartier divisors on (Xy, x T,)/T, induced by the sections s;. This proves our

lemma.

Finally we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By Lemma A.7, there exist a finite flat morphism
m: T — T and sections s;: T' — Xpu xT' (i=1..... n) of the projection
Xo X T" — T' such that the pull-back 7*D of D to X, x T’ is equal to
s1+ -+ 5,. By Lemma A.6, there exists a unique morphism of schemes
f'i T — (X — ™ such that the pull-back f*D of the universal relative
effective Cartier divisor D to Xy xT" is s+ +s5,. Let p1.pr: T'x7T — T’
be the projections. We have

(f'p0)" (D) =pif "D =pi(si+-+s) =pinD =psn'D = ... = (fp2)"(D).

that is, (f'p1)*(D) = (f'p2)*(D). By Lemma A.6 we have 'rr = f'p>.
By the theory of descent, ([SGA 1] VIII, Theorem 5.2), there exists a unique

morphism of schemes f: T — (X, — Q)" such that f' = fr, and the pull-back
of D to Xpu x T is D.
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