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RETOUR SUR UN THÉORÈME DE CHEVALLEY

par D. Luna

Abstract. A new proof is given of a classical result due to Chevalley, concerning
the unipotent radical of algebraic groups.

Soit G un groupe algébrique affine connexe (le corps de base k étant

algébriquement clos), et soit T un tore maximal de G.

Lorsqu'on développe la théorie des groupes algébriques (voir par exemple
les ouvrages [Bo] ou [Sp]), après quelques généralités (sur la décomposition
de Jordan, les espaces homogènes, les groupes résolubles*), on commence

par établir certaines propriétés des sous-groupes de Borel : on montre que les

sous-groupes de Borel sont conjugués, et que tout sous-groupe de Borel est

égal à son normalisateur; de plus, si Br désigne l'ensemble des sous-groupes
de Borel de G contenant T, on montre que Br est fini et que le normalisateur
Ng(T) de T opère transitivement dans Br, etc. Puis on introduit (le radical
et) le radical unipotent de G, noté RU(G) dans la suite, et on met le cap sur
la structure des groupes semi-simples et réductifs.

C'est ici qu'apparaît le résultat charnière suivant, crucial pour la suite:

THÉORÈME (Chevalley). La composante neutre de l'intersection des RU(B)
(B G B7), est égale au radical unipotent de G.

Les preuves de ce théorème qu'on trouve dans la littérature (voir [Bo] § 13,

page 174, ou [Sp] chap. 7, page 130), sont proches de la preuve originale
de Chevalley ([Ch], exp. 12). Celle-ci utilise déjà quelques propriétés des
«racines» de G et se trouve ainsi imbriquée dans l'étape suivante de la
théorie: en effet, le théorème de Chevalley est utilisé à son tour lorsqu'on

Pour une présentation simple des théorèmes de structure des groupes algébriques affines
résolubles connexes, voir aussi [Do],
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montre que les racines de G forment un «système de racines» (voir [Bo]
§14 et [Sp] chap. 8). Dans cette note, on propose une preuve plus «basique»,
plus proche de l'esprit géométrique du début de la théorie.

Je voudrais remercier le referee pour ses remarques constrictives.

1. Notons C la composante neutre de l'intersection des RU(B) (B G Br).
Désignons par X la variété des drapeaux de G, et par XT l'ensemble des points
fixes de T dans X. Pour tout p G XT, posons X(p) — {x G X | p G T • x).

PROPOSITION. Les X(p) (p G Xt) sont des ouverts affines de X, stables

par C.

Montrons d'abord que la proposition implique le théorème. Il est clair que
RU(G) C C. Pour établir l'inclusion opposée, il suffit de montrer que C opère
trivialement dans X.

Puisque T et C sont résolubles connexes et que X est complet, les seules

orbites fermées de T et de C dans X sont les points fixes. Par suite, les X(p)
(p G XT) recouvrent X, et pour tout x G X, il existe dans C x un point y
fixé par C. Si p G XT est tel que y G X(p), alors X(p) contient aussi C - x.
Mais toute orbite d'un groupe unipotent dans une variété affine est fermée

(voir [Bo] page 88, ou [Sp] page 37). D'où x y, ce qui montre bien que
C opère trivialement dans X.

2. Prouvons maintenant la proposition. Comme tout espace homogène, on

peut plonger X dans un P(L), où V est un G-module rationnel de dimension

finie. On peut supposer que X ne soit contenu dans aucun P(W), quel que
soit l'espace linéaire propre W de V. Choisissons un groupe à un paramètre

multiplicatif À : k* —* T tel que k*, opérant dans V à travers À, ait les mêmes

vecteurs propres que T.
On utilisera la «décomposition de Bialynicki-Birula» de X associée à À

(voir [B-B] et aussi [Bo], 13.3). Pour tout p G XT, posons

X(\,p) {x G X I lim \(t) • x p}
>o

* *

Les X(\,p) (p G XT) sont localement fermés dans X et leur réunion (disjointe)
est égale à X. Puisque XT est fini, il existe un (unique) p° G XT tel que

X(X,p°) est ouvert dans X. Pour tout v e V\ {0}, notons [u] le point de

P(V) «en dessous» de v. Soit v\,...,Vd une base de V, formée de vecteurs

propres de T, et telle que [v\] p°. Soient nt (i 1,..., d) les entiers tels
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que X(t)Vi flVi. Désignons par V* l'espace vectoriel dual de V, et par

w*...., Vj la base duale de V*. Comme on suppose que X n'est contenu dans

aucun P(W), W sous-espace linéaire propre de V, il existe [^] G X(X,p°)
tel que (v,vf) ^ 0 quel que soit i 1,..., d. On en déduit que nx < ni

(i >2), et que X(X,p°) {[u] G X | ^0}. En particulier X(X,p°)
est un ouvert affine de X.

Montrons que X(À,p°) est stable par C. Désignons par vf- 1'hyperplan
de V* orthogonal à vx. Le groupe G opère aussi dans V* et P(V*). Si G-w
est une orbite de G contenue dans alors w est orthogonal à tout vecteur
de G vi, donc w 0 (car G vi engendre V comme espace vectoriel).
Par conséquent, toute orbite de G dans F(V*) rencontre P(V*) \
Puisque X(t)v* t~niv* (i \,... ,d), tout y G P(V*) \ P(u^) vérifie
limr_^oo X(t)-y [u*], d'où il suit que l'orbite G- [t;*] est fermée dans P(E*).
Notons P le groupe d'isotropie de G en [u*]. Comme P est parabolique
et contient T, P contient un 5 G Br. Par suite C est contenu dans P.
Comme C est unipotent, il fixe non seulement [u*] mais aussi v\. Puisque
X(X,p°) {[u] G X | {v,v*) 0}, il s'ensuit bien que X(X,p°) est stable

par C.

Enfin, on a X(X,p°) X(p°) (en effet X(X,p°) C X(p°) est vrai par
définition, et l'autre inclusion vient du fait que X(X,p°) est ouvert, stable

par T, et contient p°). Le groupe NG(T), qui opère transitivement dans XT,
permute les X(p) (p G XT). Par ailleurs, NG(T) normalise visiblement C. Par

conséquent, tous les X(p) (p G XT) sont des ouverts affines de Z, stables

par C.

Remarque. Un peu plus loin dans la théorie, on peut montrer que les

X(X,p) (p G Zr) ci-dessus sont en fait les cellules de la «décomposition
de Bruhat» (voir [Bo] §14 et [Sp] chap. 8). Les X(p) (p G XT) ne sont
donc rien d'autre que les «grosses cellules» associées aux différents B G Br.
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