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et comme k > 3, et en appliquant le lemme 1

1,81m0'32 <0 32 ^
3 log 2 m

5 log m

Finalement, comme <4,36, il suffit de montrer
3 log 2

,„0,68m ' — 4, 36 log m > 0

L'inégalité ci-dessus est vérifiée pour tout m > 75 et comme le plus petit

nombre m avec k a/(m) >3 est 105 3 • 5 • 7, (4) est démontrée pour
tous les m avec k cJ(m) > 3, et cela termine la preuve du théorème 1.

3. Démonstration du théorème 2

D'abord, on a Pm{ 1) Om(l) et par (14), 1 n'est pas racine de Pm pour
m > 2. De même, —1 n'est pas racine de Pm : lorsque m est impair, (1)

donne

Om(— 1) p[2Md) 1

é/|m

dès que m >3. Les formules (18), (20) et (14) montrent que pour m > 3,

Om(—1) est impair, sauf pour m 2n où l'on a Om(—1) 2. On ne peut
donc avoir Pm{— 1) 0.

Soit maintenant z une racine de l'unité différente de 1 et —1 et d'ordre

r ^ 6 telle que Pm(z) 0. Par conjugaison, les autres racines d'ordre r
sont aussi racines de Pm. Soit k l'ordre de —z. (Si r 0mod4, on a

k r ; si r 2 mod 4, on a k r/2 ; si r est impair, on a k 2r.) On a

Pm(—exp(^-)) 0, et comme </?(m) est pair, il vient

/2/7T\\ 2iu \
— P.Yn 11 1 pina>"i-exn—jj rn=j+1

D'où en prenant les modules,

ß(m) > ®-(-ext,(ir))l-(2cosï)
7r \

Comme 1, on a k ^ 1,2. On a k ^ 3, sinon, z serait d'ordre r 6.
Donc k > 4 et

/?(m) > (v/2)v(m).

Par le théorème 1, m doit être égal à 2,3,4,5,6 ou 10. Le calcul direct des

polynômes Pm pour ces valeurs montre qu'ils vérifient aussi le théorème et
cela achève la démonstration du théorème 2.
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La vérification de l'irréductibilité sur Z[X] du polynôme Em défini par
(13) se fait sans problème en utilisant la procédure irreduc de Maple® jusqu'à
m - 290. Ensuite pour les valeurs de m qui sont des nombres premiers, il y
a un manque de mémoire. Nous avons donc séparé le travail en deux. Pour
les nombres m composés, la procédure irreduc marche jusqu'à 1000. Pour
les nombres m premiers, nous factorisons Em (qui est unitaire) sur Ep[X]

pour des petits nombres premiers p jusqu'à trouver une impossibilité à une
factorisation dans Z[X]. Par exemple, pour m 607, Em est de degré 600. Il
se factorise modulo 2 en un produit de 6 facteurs irréductibles de degré 100,
tandis que, modulo 5, il se factorise en un produit de 8 facteurs irréductibles :

3 de degré 4, 2 de degré 18 et 3 de degré 184. Cette méthode a permis de

tester tous les nombres premiers m jusqu'à 1000.

Nous avons également utilisé la propriété démontrée dans [5] : lorsque

m est premier, s'il existe un nombre premier p tel que Em ait au plus 3

facteurs irréductibles modulo p, alors Em est irréductible dans Z[X]. Exemple :

m 601, p — 23, Em a 2 facteurs irréductibles de degré 297 ; m 349,

p 3, Em a 3 facteurs irréductibles de degré 114.
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