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UNE MAJORATION DE LA LONGUEUR

DES POLYNÔMES CYCLOTOMIQUES

par Jean-Louis NICOLAS et Guy TERJANIAN 1

Abstract. Let us denote by ß(m) the length of 0,„, the ra-th cyclotomic
polynomial, i.e. the sum of the absolute values of its coefficients. We shall prove that

for m > 1 and m ^ 10 the following inequality holds: ß(m) < where p
is the Euler function.

Further, define Pm(X) 0„,(X) — (X — l)^(/,?) for m > 2. We shall deduce from
the above inequality that if this polynomial vanishes at some root of unity, then this
root of unity is of order 6.

1. Introduction

Nous noterons p la fonction d'Euler, p la fonction de Möbius et le
ra-ième polynôme cyclotomique. On sait que ce polynôme vérifie

(î) 4>„,(x) fin - xm/dr(d).
d\m

Nous définissons les coefficients de <Dm par

(2) Om(X) amp + <2/77,1 Y + ' * ' +

et nous posons

ß(m) \a„ho\ + |flw,i + ••• + \allh(pqn) \

Bateman a donné dans [1] une démonstration très élégante de la majoration

(3) ß(m) <

1
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où d(m) désigne le nombre de diviseurs de m. Il a été démontré par différents

auteurs (cf. [2] qui contient un bon historique du sujet) que ß(m) peut être

très grand pour certaines valeurs de m. Cependant, pour les petites valeurs
de m, ce phénomène n'apparaît pas. Par exemple, le plus petit m pour lequel

ß(m) > 1 + Lp(m)

est, d'après les calculs d'ordinateurs m 1365 3*5-7-13.
Nous nous proposons de démontrer le résultat suivant:

Théorème 1. Pour m>l et m yà 10, on a

(4) ß(m) < V.A partir de la majoration de Wigert (cf. [4], chap. 18)

log 2 log m
(5) log dirri) < (1 + 0(1)) y m -> oc

log log m

et de la minoration de (p(m) (cf. [4], chap. 18)

m
(6) ip(m) > (1 + o(l))e f-— m —> oc

log log m

où 7 désigne la constante d'Euler, il est facile de déduire de (3) que la relation

(4) est vérifiée pour m > mo. Le calcul de mo peut se faire en remplaçant
(5) et (6) par les inégalités (cf. [8] et [10])

log 2 log m
(7) log d(m) < 1.538 5

m > 3
log log m

m
(8) cp(m) > —-— — m > 3

log log m T 2, 51 / log log m

L'étude (un peu technique) de la fonction de t

t(log 2)/2 log t f log 2 log t
exp^l, 538

log log 14- 2,51/log log t 2 V
5

loglogr

montre qu'elle est positive pour t > 3786, ce qui prouve le théorème 1 pour
m > mo m 3786 ; il reste à vérifier (4) avec un ordinateur pour m < rriQ. La
démonstration du théorème 1 que nous donnerons est un peu plus longue,
mais elle évite au maximum de faire des calculs sur ordinateur.
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Soit w(m) le nombre de facteurs premiers distincts de m et u/(ra) le

nombre de facteurs premiers impairs distincts de m. Naturellement, on a

(9) lu'(m) < Lü(m) < cu'(m) + 1

D'abord, nous utiliserons au lieu de (3) l'amélioration donnée dans [2]

(10) ß(m) < mlk ly//c k Jim) > 1

Ensuite, pour minorer p{m), nous remplaçons (8) par la minoration très simple

m m
(11) ^(m)> m > 1

cj(m) + 1 üü'im) + 2

Pour démontrer (11), on écrit m — p^P^1 • • 2 < p\ < p2 < • • • < pr,
r — uj(m). On a pi > i + 1, i 1,2,... 3 r et il s'ensuit que

1 1

i + 1 J r + 1
/= i 11 i-\

qui, avec (9), prouve (11). Enfin, nous remplacerons (7) par la majoration de

üj'(m) donnée par le lemme 1 ci-dessous. La démonstration du théorème 1

fera l'objet du paragraphe 2.

Considérons maintenant le polynôme

(12) Pm(X) <î>m(X) - (X -
Dans [11], G. Terjanian a étudié la factorisation du polynôme Pm sur le corps
des rationnels. De façon plus précise, il a montré que l'on pouvait écrire

(13) Pm(X) $>m{\)X(X2-X+I m > 3

où Em(X) est un polynôme qui est premier avec X(X2 - X + 1). La fonction
e(m) est assez compliquée:

• e(m) 0 si m 3 ou si m 2pn pour p premier, p m 2 mod 3 et
ri > 0 ou si m 6qn pour q premier et n> 0.

• e(m) — 2 si m — A ou m — 2kA où k est un entier impair, k > 3 et où
A est un entier distinct de 1 dont tous les facteurs premiers sont congrus
à 1 modulo 6.

• e{m) 1 dans tous les autres cas.

Il est facile de voir que

(14) <Dra(l) 1 ou 4>m(l) p

suivant que m a deux diviseurs premiers distincts ou qu'il est une puissance
du nombre premier p.
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Dans [5] (cf. aussi [3]), les polynômes

(15) Mn(X) (X + lf - Xn - 1

sont appelés polynômes de Cauchy-Mirimanoff. Lorsque n > 3 est premier,

on a Mn(X) — (X + 1 )Pn(—X). Cauchy a montré que

avec an bn 0 si n est pair, et, si n est impair, an — \ et bn — 0,2,1
suivant que n 0,1,2 mod 3. Il est conjecturé que Hn(X) est irréductible

pour tout n > 2. On sait que (cf. [5]), lorsque n est premier, n > 9,
Hn(X) En(—X) est réductible modulo p pour tout p premier.

G. Terjanian conjecture que le polynôme Em défini par (13) est irréductible

sur les rationnels pour tout m. Cette conjecture a été vérifiée jusqu'à m 264

(cf. [11], p. 93) et à l'aide du système de calcul formel Maple®, nous avons pu
étendre les calculs jusqu'à m 1000 par une méthode que nous expliquerons
au paragraphe 3. En direction de cette conjecture, nous démontrerons comme

conséquence du théorème 1

THÉORÈME 2. Soit z une racine de l'unité telle que Pm(z) 0, où le

polynôme Pm est défini par (12) et m > 2. Alors, z est d'ordre 6, autrement

dit, z2 — z + 1=0.

La démonstration du théorème 2 fera l'objet du paragraphe 3.

Une conjecture sans doute plus facile que celle de l'irréductibilité du

polynôme Em est la suivante : Est-ce-que toute racine multiple de Pm est une

racine 6-ième de l'unité? Nous avons vu que exp(—^) est racine double

de Pm pour une infinité de valeurs de m, par exemple les nombres premiers

m qui vérifient m 1 mod 6.

LEMME 1. Soit u'(n) le nombre de facteurs premiers impairs distincts de

n, et e un nombre réel positif. On pose

(16) MnQO X{X + \)a"(X2 \)b"Hn(X)

2. Démonstration du théorème 1

"o «o(e) E
3<p<exp(l /e)

Alors, pour tout n> l, on a

tu'(ri) < elog(n) + (w'(n0) - elog(«0))
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Cas particulier: e 0,32/log2. On a pour tout n > 1

0.32
eo'(n) < —— log n + 0, 852

log 2

ou encore
2u!{n) < 1î81/20..32>

Démonstration. Nous utiliserons implicitement la méthode des "nombres
hautement composés supérieurs" introduite par Ramanujan (cf. [9], paragraphe
32).

Pour a G N, on définit f(a) 1 si a > 1 et f(a) 0 si a 0. La
fonction a/ est additive; on a a/(2Q) 0 et Lü'(pa) f(a) < a pour tout
a G N, et p premier impair. Soit V l'ensemble des nombres premiers. On
écrit

// pŒp
% % > o

pev
et il s'ensuit que

uj'(n) - e log(n) - (o/(n0) - £log(«0))

— eoi2 log 2 + E (f(ap)~ eap log p- (1 - £ logp))
3</7<exp(l /s)

+ E (f(ap) - eap log
p>exp(l/e)

< ^2 (f(ap)-l)(l-elogp)+V log p) <0.
3<p<exp(l/e) p>exp(l/s)

Pour £ 0,32/ log 2, on a exp(l/£) 8,724 3 5 • 7 105 et
t/(«o) - £log(«0) < 0, 852.

Rappelons d'abord les formules de calcul de d>,„ (cf. [6], 4.6.2, exer-
cice 32) :

(17) pour p premier, %(X) 1 + + X2 H b Xp~x

(18) si ppremier divise n, <&p„(X) <f>„(Xp)

O (Xp
(19) si ppremier ne divise pas n,<£>,,„(X) ———-

<L(X)

(20) si n est impair, <J)2„(X) 5UY2 (pj-X)
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Soit n ker m le noyau impair de m : si m 2ap^lp21... p^k,
3 < pi < P2 < • • • < Pk> on a n — p\pi---Pk• Les formules (18) et

(20) montrent que

(21) ß(m) ß(n).

Démontrons d'abord que le théorème 1 est vrai lorsque k u'(m) < 2.

• Si k 0, m 2e* et par (21), ß(m) /?(1) 2, tandis que
y?(m) 2a_1 et (4) est vérifié pour a > 3. Les exceptions sont donc

m 1,2,4.

• Si k 1, on a m 2ap^\ et par (21), et (17), /?(m) /?(w)

/?(Pi) — Pi et <p(m) >(p\ — 1). L'inégalité

/m < (vTr-1
est vérifiée pour p\>l. Pour p\ =3 ou 5, on a

pi < (%/2)2(p'-1)

et cela démontre (4) pour m 2ajpi, avec a > 2 ou pour m 2ap^1,
avec 3 ou 5, a — 0 ou 1, et a\ >2. Les exceptions sont donc

m 3,5, 6,10.

• Si & 2, on sait depuis Migotti (cf. [7]) que dans (2) les coefficients

am^ valent — 1, 0. ou 1 et cela entraîne

(22) ß(m) < 1 + (f(m).

Pour t > 6, on a 1 + £ < (a/2)^, et donc (22) implique (4) dès que (p(m) > 6.

Or, lorsque k 2, on a y?(m) > (pi — l)(p2 — 1) > 2 • 4 8.

On peut maintenant supposer k> 3. Par (10), on a

2^—1

logß(m) < ——log m
k

et par (11), on a

c p(m)log(V2)> f log 2
2 k + 2

Pour prouver (4), il suffit donc d'assurer

2fc_1 1 m

k ° 2 k + 2

ou encore
2k

logm < lo§2

'(1 + ï)<log2 log m



LONGUEUR DES POLYNÔMES CYCLOTOMIQUES 307

et comme k > 3, et en appliquant le lemme 1

1,81m0'32 <0 32 ^
3 log 2 m

5 log m

Finalement, comme <4,36, il suffit de montrer
3 log 2

,„0,68m ' — 4, 36 log m > 0

L'inégalité ci-dessus est vérifiée pour tout m > 75 et comme le plus petit

nombre m avec k a/(m) >3 est 105 3 • 5 • 7, (4) est démontrée pour
tous les m avec k cJ(m) > 3, et cela termine la preuve du théorème 1.

3. Démonstration du théorème 2

D'abord, on a Pm{ 1) Om(l) et par (14), 1 n'est pas racine de Pm pour
m > 2. De même, —1 n'est pas racine de Pm : lorsque m est impair, (1)

donne

Om(— 1) p[2Md) 1

é/|m

dès que m >3. Les formules (18), (20) et (14) montrent que pour m > 3,

Om(—1) est impair, sauf pour m 2n où l'on a Om(—1) 2. On ne peut
donc avoir Pm{— 1) 0.

Soit maintenant z une racine de l'unité différente de 1 et —1 et d'ordre

r ^ 6 telle que Pm(z) 0. Par conjugaison, les autres racines d'ordre r
sont aussi racines de Pm. Soit k l'ordre de —z. (Si r 0mod4, on a

k r ; si r 2 mod 4, on a k r/2 ; si r est impair, on a k 2r.) On a

Pm(—exp(^-)) 0, et comme </?(m) est pair, il vient

/2/7T\\ 2iu \
— P.Yn 11 1 pina>"i-exn—jj rn=j+1

D'où en prenant les modules,

ß(m) > ®-(-ext,(ir))l-(2cosï)
7r \

Comme 1, on a k ^ 1,2. On a k ^ 3, sinon, z serait d'ordre r 6.
Donc k > 4 et

/?(m) > (v/2)v(m).

Par le théorème 1, m doit être égal à 2,3,4,5,6 ou 10. Le calcul direct des

polynômes Pm pour ces valeurs montre qu'ils vérifient aussi le théorème et
cela achève la démonstration du théorème 2.
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La vérification de l'irréductibilité sur Z[X] du polynôme Em défini par
(13) se fait sans problème en utilisant la procédure irreduc de Maple® jusqu'à
m - 290. Ensuite pour les valeurs de m qui sont des nombres premiers, il y
a un manque de mémoire. Nous avons donc séparé le travail en deux. Pour
les nombres m composés, la procédure irreduc marche jusqu'à 1000. Pour
les nombres m premiers, nous factorisons Em (qui est unitaire) sur Ep[X]

pour des petits nombres premiers p jusqu'à trouver une impossibilité à une
factorisation dans Z[X]. Par exemple, pour m 607, Em est de degré 600. Il
se factorise modulo 2 en un produit de 6 facteurs irréductibles de degré 100,
tandis que, modulo 5, il se factorise en un produit de 8 facteurs irréductibles :

3 de degré 4, 2 de degré 18 et 3 de degré 184. Cette méthode a permis de

tester tous les nombres premiers m jusqu'à 1000.

Nous avons également utilisé la propriété démontrée dans [5] : lorsque

m est premier, s'il existe un nombre premier p tel que Em ait au plus 3

facteurs irréductibles modulo p, alors Em est irréductible dans Z[X]. Exemple :

m 601, p — 23, Em a 2 facteurs irréductibles de degré 297 ; m 349,

p 3, Em a 3 facteurs irréductibles de degré 114.
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