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UNE MAJORATION DE LA LONGUEUR
DES POLYNOMES CYCLOTOMIQUES

par Jean-Louis NICOLAS et Guy TERJANIAN')

ABSTRACT. Let us denote by [B(m) the length of ®,, the m-th cyclotomic
polynomial, i.e. the sum of the absolute values of its coefficients. We shall prove that

for m > 7 and m # 10 the following inequality holds: B(m) < (v/2)?"™ | where ¢
is the Euler function.

Further, define Pp,(X) = ®,(X) — (X — 1)?™ for m > 2. We shall deduce from
the above inequality that if this polynomial vanishes at some root of unity, then this
root of unity is of order 6.

1. INTRODUCTION
Nous noterons ¢ la fonction d’Euler, 1 la fonction de Mobius et @, le
m-ieme polyndme cyclotomique. On sait que ce polyndme vérifie

(1) @, (X) = | J(1 —x"/4yH@.
d|m

Nous définissons les coefficients de ®@,, par
2) D, (X) = Ao + am X + - + Gy oy X
et nous posons
B(m) = |apn ol + \am,1| Tt ‘am,s@(m)l .
Bateman a donné dans [1] une démonstration trés élégante de la majoration

(3) 5(”1) < I,n%d(m)
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ou d(m) désigne le nombre de diviseurs de m. Il a été démontré par différents
auteurs (cf. [2] qui contient un bon historique du sujet) que [(m) peut étre
tres grand pour certaines valeurs de m. Cependant, pour les petites valeurs
de m, ce phénomene n’apparait pas. Par exemple, le plus petit m pour lequel

B(m) > 1+ p(m)

est, d’apres les calculs d’ordinateurs m = 1365 =3-5.7-13.
Nous nous proposons de démontrer le résultat suivant:

THEOREME 1. Pour m>7 et m # 10, on a

4) Blm) < (V2)7™

A partir de la majoration de Wigert (cf. [4], chap. 18)

log21
(5) logd(m) < (1 +o(1) =228
loglogm

et de la minoration de (m) (cf. [4], chap. 18)

(6) om) > (1+o(D)e™"——,  m —oc

loglog m
ou -y désigne la constante d’Euler, il est facile de déduire de (3) que la relation
(4) est vérifiée pour m > my. Le calcul de my peut se faire en remplacant

(5) et (6) par les inégalités (cf. [8] et [10])

log21
7 logd(m) < 1,538 —2~08 >3
loglogm
(8) (m) > = >3
T = e¥loglogm +2,51/loglogm ’ "=
L’étude (un peu technique) de la fonction de ¢
t(log 2)/2 log ¢t log2logt
(log 2)/ e - exp<1,538 i 1 )
evloglogt+2,51/loglogt 2 loglogt

montre qu’elle est positive pour t > 3786, ce qui prouve le théoreme 1 pour
m > my = 3786 il reste a vérifier (4) avec un ordinateur pour m < my. La
démonstration du théoreme 1 que nous donnerons est un peu plus longue,
mais elle évite au maximum de faire des calculs sur ordinateur.
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Soit w(m) le nombre de facteurs premiers distincts de m et w'(m) le
nombre de facteurs premiers impairs distincts de m. Naturellement, on a

) w'(m) < wim) < w'(m)+ 1.
D’abord, nous utiliserons au lieu de (3) I’amélioration donnée dans [2]
(10) By <m? e, k=wm) > 1.
Ensuite, pour minorer ¢(m), nous remplacons (8) par la minoration trés simple
m m
> > , m > 1.
) om) 2 11 S o) + 2

Q00

Pour démontrer (11), on écrit m = p'p;?...p7, 2 < p1 < p2 < -+ <Dy,
r=w(m).Onap >i+1,i=1,2,...,r et il s’ensuit que

SOEZL) ﬁ(lﬂ—>>n(l_l+1>—ri1

i=1

qui, avec (9), prouve (11). Enfin, nous remplacerons (7) par la majoration de
w’'(m) donnée par le lemme 1 ci-dessous. La démonstration du théoréme 1
fera 1’objet du paragraphe 2.

Considérons maintenant le polyndome

(12) Pr(X) = @,(X) — (X — 1)#P

Dans [11], G. Terjanian a étudié la factorisation du polynéme P,, sur le corps
des rationnels. De facon plus précise, il a montré que 1’on pouvait écrire

(13) Pp(X) = ®p(DX (X> = X + D™ E,(X) m=>3
ot E,(X) est un polyndme qui est premier avec X(X> — X + 1). La fonction
e(m) est assez compliquée :

e e(m) =0 st m=3 ousim=2p" pour p premier, p = 2 mod 3 et
n>0 ousi m=6qg" pour g premier et n > 0.

o e(m)=2si m=A ou m=2"A ou k est un entier impair, k > 3 et ol
A est un entier distinct de 1 dont tous les facteurs premiers sont congrus
a 1 modulo 6.

e e¢(m)=1 dans tous les autres cas.

Il est facile de voir que
(14) C,(1)=1 ou @,()=p

suivant que m a deux diviseurs premiers distincts ou qu’il est une puissance
du nombre premier p.
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Dans [5] (cf. aussi [3]), les polyndmes
(15) M,X)=X+1)"—-X"—1

sont appelés polynémes de Cauchy-Mirimanoff. Lorsque n > 3 est premier,
on a M,(X) =—X+ )P,(—X). Cauchy a montré que

(16) My(X) = X(X + D*(X* + X + D™ H,(X)

avec a, = b, = 0 si n est pair, et, si n est impair, a, =1 et b, = 0,2,1
suivant que n = 0,1,2 mod 3. Il est conjecturé que H,(X) est irréductible
pour tout n > 2. On sait que (cf. [5]), lorsque n est premier, n > 9,
H,(X) = E,(—X) est réductible modulo p pour tout p premier.

G. Terjanian conjecture que le polyndme E,, défini par (13) est irréductible
sur les rationnels pour tout m. Cette conjecture a été vérifiée jusqu’a m = 264
(cf. [11], p. 93) et & 'aide du systéme de calcul formel Maple®, nous avons pu
étendre les calculs jusqu’a m = 1000 par une méthode que nous expliquerons
au paragraphe 3. En direction de cette conjecture, nous démontrerons comme
conséquence du théoreme 1

THEOREME 2. Soit z une racine de ['unité telle que P,(z) = 0, ou le
polynéme P,, est défini par (12) et m > 2. Alors, 7 est d’ordre 6, autrement
dit, 72 —z+1=0.

La démonstration du théoreme 2 fera 1’objet du paragraphe 3.

Une conjecture sans doute plus facile que celle de I'irréductibilité du
polynome E,, est la suivante: Est-ce-que toute racine multiple de P,, est une
racine 6-ieme de I'unité ? Nous avons vu que exp(—z%
de P,, pour une infinité de valeurs de m, par exemple les nombres premiers

m qui vérifient m = 1 mod 6.

) est racine double

2. DEMONSTRATION DU THEOREME 1

LEMME 1. Soit w'(n) le nombre de facteurs premiers impairs distincts de
n, et € un nombre réel positif. On pose

no = np(e) = H p.

3<p<exp(l/e)

Alors, pour tout n > 1, on a

w'(n) < elog(n) + (W'(ng) — elog(no)) .




LONGUEUR DES POLYNOMES CYCLOTOMIQUES 305

Cas particulier: ¢ = 0,32/1og2. On a pour tout n > 1

0,32
w'(n) < ~—logn+0,852.
log?2

Ol encore
2w < 181,032

Démonstration. Nous utiliserons implicitement la méthode des “nombres
hautement composés supérieurs” introduite par Ramanujan (cf. [9], paragraphe
32).

Pour a € N, on définit f(a) =1 si a > 1 et f(a) =0 si « =0. La
fonction w’ est additive; on a w'(2%) = 0 et W'(p*) = f(a) < o pour tout
a € N, et p premier impair. Soit P I’ensemble des nombres premiers. On
écrit

n= Hpo‘f’, a, >0
peEP

et 1l s’ensuit que
w'(n) — elog(n) — (w'(ng) — €log(ng))

= —caylog2 + Z (f(ap) —eaplogp — (1 — elogp))
3<p<exp(l/e)

+ Z (F(ap) — e, logp)

p>exp(l/e)
< ) (e -Dl-clogp)+ Y fla)(1—elogp) <0.
3<p<exp(l/e) p>exp(l/e)

Pour € = 0,32/log2, on a exp(1/e) =8,724..., ng=3-5-7 = 105 et
w'(ng) — elog(ng) < 0, 852.

Rappelons d’abord les formules de calcul de ®,, (cf. [6], 4.6.2, exer-
cice 32):

(17) pour p premier, O,X)=1+X+X>+... 4 x!
(18) si p premier divise n, D, (X) = ©,(XP)
. . . . p
(19) si p premier ne divise pas n, @,,(X) = D, (XF)
D, (X)
D,(X?)

(20) si n est impair, D, (X) = =d,(—X).

D, (X)
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Soit n = kerm le noyau impair de m: si m = 2%p"'p3*...p*,
3<p <pr < - - < pr,onan=ppy...pr. Les formules (18) et
(20) montrent que
(21) p(m) = B(n).

Démontrons d’abord que le théoréme 1 est vrai lorsque k& = w'(m) < 2.

e Si k=0, m = 2% et par (21), B(m) = ((1) = 2, tandis que
om) = 2% et (4) est vérifié pour o > 3. Les exceptions sont donc
m=1,2,4.

e Sik=1,o0nam=2%, etpar (21), et (17), B(m) = B(n) =
B(p1) = p1 et p(m) > (p1 — 1). L’inégalité

pi < (V2!
est vérifiée pour p; > 7. Pour py =3 ou 5, on a

p1 < (V2)*P1=D

et cela démontre (4) pour m = 2%, avec a > 2 ou pour m = 2°p7",
avec pj = 3 ou 5, a =0 ou 1, et oy > 2. Les exceptions sont donc
m=3,5,6,10.

e Si k=2, on sait depuis Migotti (cf. [7]) que dans (2) les coefficients
anm,; valent —1, 0 ou 1 et cela entraine

(22) B(m) < 1+ p(m).
Pour 1> 6, on a 1+t < (v2), et donc (22) implique (4) des que p(m) > 6.
Or, lorsque k=2, 0ona om) > P —Dp2—1)>2-4=28.

On peut maintenant supposer k > 3. Par (10), on a

k—1
log B(m) < & logm

et par (11), on a
m

omlog(v2) > =

log?2.
= 2k+2 °
Pour prouver (4), il suffit donc d’assurer
k=1 1 m
—1 < = log2
k CBMSoEia B
ou encore
m
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et comme k > 3, et en appliquant le lemme 1,

3log2 m

1.8 0,32 )
, Bl < 5 logm

Finalement, comme 5;; 01;%1 < 4,36, il suffit de montrer

m®% — 4 36logm > 0.

L’inégalité ci-dessus est vérifiée pour tout m > 75 et comme le plus petit
nombre m avec k = w'(m) > 3 est 105 =3-5-7, (4) est démontrée pour
tous les m avec k = w'(m) > 3, et cela termine la preuve du théoreme 1.

3. DEMONSTRATION DU THEOREME 2

D’abord, on a P,,(1) = ®,(1) et par (14), 1 n’est pas racine de P, pour
m > 2. De méme, —1 n’est pas racine de P, : lorsque m est impair, (1)
donne

@, (—1) = qu(d) — 2Zamid) —
d|m

dés que m > 3. Les formules (18), (20) et (14) montrent que pour m > 3,
®,,(—1) est impair, sauf pour m = 2" ou 'on a ®,(—1) = 2. On ne peut
donc avoir P,,(—1) =0.

Soit maintenant z une racine de 1’unité différente de 1 et —1 et d’ordre
r # 6 telle que P,(z) = 0. Par conjugaison, les autres racines d’ordre r
sont aussi racines de P,,. Soit k¥ l'ordre de —z. (Si r = Omod 4, on a

=r;si r=2mod4, ona k=r/2; sir est impair, on a k =2r.) On a

P,.(— exp(z‘%)) = 0, et comme (m) est pair, il vient

ou(-o0(2)) = (ow(2) 1)

D’ou en prenant les modules, ,
2i (m)
s> o (o0 (3)) 2 (2 7) ™

Comme z> # 1, on a k # 1,2. On a k # 3, sinon, z serait d’ordre r = 6.
Donc k£ > 4 et

Blm) > (V2)¢™

Par le théoreme 1, m doit &tre égal a 2,3,4,5,6 ou 10. Le calcul direct des

polyndmes P, pour ces valeurs montre qu’ils vérifient aussi le théoréme et
cela acheéve la démonstration du théoréme 2.
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La vérification de I’irréductibilité sur Z[X] du polyndéme E,, défini par
(13) se fait sans probleme en utilisant la procédure irreduc de Maple® jusqu’a
m = 290. Ensuite pour les valeurs de m qui sont des nombres premiers, il y
a un manque de mémoire. Nous avons donc séparé le travail en deux. Pour
les nombres m composés, la procédure irreduc marche jusqu’a 1000. Pour
les nombres m premiers, nous factorisons E, (qui est unitaire) sur F,[X]
pour des petits nombres premiers p jusqu’a trouver une impossibilité a une
factorisation dans Z[X]. Par exemple, pour m = 607, E,, est de degré 600. 1l
se factorise modulo 2 en un produit de 6 facteurs irréductibles de degré 100,
tandis que, modulo 5, il se factorise en un produit de 8 facteurs irréductibles:
3 de degré 4, 2 de degré 18 et 3 de degré 184. Cette méthode a permis de
tester tous les nombres premiers m jusqu’a 1000.

Nous avons également utilisé la propriété démontrée dans [5]: lorsque
m est premier, s’il existe un nombre premier p tel que E, ait au plus 3
facteurs irréductibles modulo p, alors E,, est irréductible dans Z[X]. Exemple:
m = 601, p =123, E, a 2 facteurs irréductibles de degré 297; m = 349,
p =3, E, a 3 facteurs irréductibles de degré 114.
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