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36 LEI FU

THEOREM 1. There is a morphism of algebraic varieties 0: X — S — Jy
satisfying the following properties :

(a) The extension of 0 to the group of divisors on X prime to S induces,
by passing to quotient, an isomorphism between the group C° of classes of
divisors of degree zero with respect to m-equivalence and the group Ju, .

(b) The extension of 0 to (X — S)™ induces a birational map from X™
t0 Ju .

The following theorem characterizes J,, by a universal property :

THEOREM 2. Let f: X — G be a rational map from X to a commutative
algebraic group G and assume m is a modulus for f. Then there is a unique
homomorphism F: J, — G of algebraic groups such that f = F o0 + f(Py).

Proof. Replacing f by f — f(Py), we may assume f(Py) = 0. Since
m is a modulus for f, the extension of f to the group of divisors of X
prime to S induces a homomorphism CY — G by passing to quotient. By
Theorem 1(a) we have J,, = C% as groups. So we have a homomorphism
of groups F:J, — G such that f = F@. It remains to prove F is a
morphism of algebraic varieties. By Theorem 1 (b) we have a birational map
0: (X — S — J,. Denote the extension of f to (X — S)™ by f’. Then
FO = f’. Since 6 is birational, it induces an isomorphism between an open
subvariety of (X — $)™ and an open subvariety of J,,. Moreover f’ is a
morphism of algebraic varieties. Hence F' i1s a morphism of algebraic varieties
when restricted to some open subset of J.,. The whole J,, can be obtained
from this open subset by translation. So F' is a morphism of algebraic varieties.

6. GENERALIZED JACOBIANS AND PICARD SCHEMES

In this section we prove Jy, is the Picard scheme of X, .
Let T be a k-scheme. Consider the Cartesian square

Xo xT —— X

'] l

T —— spec(k) .

We have ¢.Ox. xr = Or by [EGA] 111, §1.4.15, the fact H'(Xy, Ox,,) =k, -
and the fact that T — spec(k) is flat. The morphism ¢ has a section
s: T — X XT, t— (Po,t).
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LEMMA 6.1. Let Ly and Ly be two invertible sheaves on X XT. Assume
Ly = L,y. Then the canonical map Hom(Ly, L) — Hom(s* L1, s* L) induced
by s is bijective.

Proof. Since L; = L,, it is enough to show that the canonical map
Hom(L,, L£1) — Hom(s*L,s*Ly) is bijective. We have a commutative diagram

OmeT X X ry —— OT(T)

l |

Hom(L, L) ——— Hom(s*Ly,s*Ly),

where the horizontal arrows are induced by s. We have

Hom(L1, £;) = Hom(Ox, x7, L1 @ L1
= Hom(Ox,, x1; Ox, x1) = Ox, x7(Xm X T).

Hence the left vertical arrow in the above diagram is bijective. Similarly
the right vertical arrow is also bijective. Since ¢.Ox_xr = Or, we have
Ox, x7(Xm X T) =2 O(T), and the upper horizontal arrow is bijective. Hence
Hom(L,, £1) =2 Hom(s*L;,s*L;) by the commutativity of the above diagram.

LEMMA 6.2. Let {U;} be an open covering of T and let L; be invertible
sheaves on Xuw X U;. Assume s*L; = Oy, and L; |x,, xwnuy= Lj [xm xwinv)-
Then there exists an invertible sheaf L on Xuw X T such that L |x, xu,=2 L;
and s*L = Or. Moreover L is unique up to isomorphism.

Proof. Fix an isomorphism «;: s*L; — Oy, for each i. Let
.k *
i " Liluny, — " Liluny,

be the isomorphism (oy|y,nu,) ™" © (a
map

vinu;). By Lemma 6.1 the canonical

Hom(Zi[x,, xwinuy: £jlxy xwinuy) — Hom(s* Li|v,n;, s Lilvinu,)
s bijective. So a;; can be lifted uniquely to an isomorphism

A,'ji E,‘

X x(UiNUN— L %0 x w00y -

By the uniqueness of the lifting and the fact that i = e on U;NUN Uy,
we have AyA; = Ay on Xy X (U; N UiNU). So A;; defines glueing data
and we can glue the £; together to get an invertible sheaf £ on X, x 7. By
the construction of £ we have s*£ = Or. This proves the existence of L.
Similarly using Lemma 6.1 one can prove £ is unique up to isomorphism.
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LEMMA 6.3. Assume T is integral. Let L, and L, be two invertible
sheaves on Xn x T satisfying Ly, = Ly, for all t € T. Then there is an
invertible sheaf M on T such that L = L, ® g* M.

Proof. Let L = L; ® L ' Then L, = Oy, . It suffices to show that
L = g*M for some invertible sheaf M on T. We have H°(Xy,, L, =
HO(Xm,(DXm) = k. By Theorem 1.1(c), the sheaf ¢,L 1is invertible and
g« L @ k(t) = H' X, L;). So the restriction (¢*g.L); — L, of the canonical
map g*q.L — L to the fiberof g at r € T is HO(Xm,[Z,)@)(’)Xm — L,, which
i1s an isomorphism since L; = Oyx_. By Nakayama’s Lemma, the canonical
map g*g.L — L is surjective. But since it is a homomorphism of invertible

sheaves, it must be bijective. Hence L = g*¢.L.

Now we use the above lemmas to construct a canonical invertible sheaf
on Xm X Ju .

On X, x (X—S5)™ we have the invertible sheaf corresponding to the divisor
D — p*(wPy), where D 1s the universal relative effective Cartier divisor and
P X X (X — ™ — X, is the projection. Since 0: (X — S)™ — J, is
birational, there exist open subsets U in (X — S$)™ and V in J,, such that
6 induces an isomorphism U = V. Hence we can push-forward the above
invertible sheaf on X, x (X —S)™ to get an invertible sheaf £y on Xy x V.
For each r € J,,, denote by L(#) the invertible sheaf on X, corresponding
to the divisor class in C? that is mapped to t € J, under the canonical
isomorphism C% = Jum . Obviously the restriction Ly, of Ly to the fiber of
the projection q: Xy XJy — Jiy at £ € V is isomorphic to £(#). The invertible
sheaf Ly @ (¢*s*Ly)~! has the same property, where s: Jy — Xpm X Jm 1S
the section ¢ — (Po, ). Thus replacing Ly by Ly ® (¢*s*Ly)~ " if necessary,
we may assume that s*Ly = Oy .

For each a € Jn, let T_,: Jiuw — Jm be the translation ¢ — t—a. Consider
the invertible sheaf L,y = (d X T_,)*Ly ® p*L(a) on X, @ (a+ V), where
p: Xm X Jm — X 1s the projection. The restriction L,4y 44 of Loy to the
fiber of g at a+t€a+V i1s

((d X T_)* Ly @ p*L(@))a+s = Ly ® L(a) = L) @ L(a) = L(a+ 1),

that is, L,qvayt = L(a+1). Hence for any 1 € VN (a+ V), we have
Ly:= Lyrv,. By Lemma 6.3, we have

Ly xm x(v@+v) = Lagv|xn x(vn@+vy ® ¢-M

for some invertible sheaf M on VN (a+ V). But since s*Ly = Oy, we also
have s*L,iyv = Ouiy. Hence M =2 Oynqvy. Therefore Lylx,, xvnua+vy =
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Lavv|x, x(va@+vy - By Lemma 6.2, we can glue L,y (a € J,) together to
get an invertible sheaf £; on Xy X Jy. It has the property that its restriction
to the fiber of ¢ at ¢ € Jy is isomorphic to £(r) and s*L;, = Oy, .

Define

PUT) = {L£ € Pic(Xyy x T) | deg(L) = 0}/q™ Pic(T),

where deg(L) is defined as the leading coefficient of x(L£LE™) as a polynomial
in n. Since s*¢* = id, we may define

PUT) = {£ € Pic(Xy, x T) | deg(£) =0 and s*L = Or}

as well. In particular, we have L; € P°(J.,). Using the first definition
of P°(T) and Lemma 6.3, one can show that the pull-back of L; by
idx0: X X (X =8 — X, X Jy, is the invertible sheaf on Xy X (X — $)m
corresponding to the divisor D — p*(mPyp).

The following theorem says that J, is the Picard scheme of X, .

THEOREM 3. The functor T — PY(T) is represented by Jy,. More precisely,
for any invertible sheaf L on Xy X T of degree 0 satisfying s*L = Or,
there is one and only one morphism of schemes f: T — Jun such that L is
the pull-back of L;_ by id X f: Xpm X T — Xiy X Jiy.

Proof. Let Vo = {D € X -8 | [,(D) =1, KD - m) = 0}. By
Lemma 3.3, we know V; is non-empty and open in (X — S)™ . Note that
for every D € Vj, there is one and only one effective divisor in X, that is
m-equivalent to D. Hence the restriction 8]y, of 6: (X —S)™ — J,, to Vy
is injective. By [EGA] 111, §4.4.9, 6|y, is an open immersion.

Consider the Cartesian square

X X T SN Xin

| l

I —— spec(k) .

Let L' = L ® p*L(wPy), where L(mPy) is the invertible sheaf on X,
corresponding to the divisor mPy. Let us prove the theorem under the
extra assumption that for every tr € T, we have dimHO(Xm,Lj) = 1 and
dim H°(X, £! ® L£(—m)) = 0, where L£(—m) is the invertible sheaf on X
corresponding to the divisor —m. By the Riemann-Roch theorem, for every
t € T, we have dimH'(Xy,, £]) = 0. By Theorem 1.1(d) the sheaf g.L' is
invertible. The canonical map g*g.L’ — £’ induces
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s: Oxoxr — L' ® (g g L)'

Using Remark 2.1, one can show that the pair (£’ ® (¢*q.£L)~!,s) defines
a relative effective Cartier divisor on (X, x T)/T. By Proposition 3.1, there
exists a unique morphism of schemes ¢: T — (X — S)™ such that the pull-
back by id x g of the universal relative effective Cartier divisor D 1s the
divisor defined by (£’ ® (¢*q+L’)"!,s). Let f = fg. Then the pull-back of
Ly by id x f is L. This proves the existence of f. To prove f is unique,
assume f: T — Jy, is a morphism such that the pull-back of £; by id X f
is L. By our extra assumption, we must have Im(f) C 6(Vy). But 6|y, is
an open immersion. So there exists a morphism g: 7 — (X — S)™ such that
f =06g. We leave it to the reader to prove that the pull-back of the universal
relative effective Cartier divisor D by id X g is the divisor defined by the
pair (£’ ® (g*q.L)~!,s). By Proposition 3.1, such kind of g is unique. So
f 1s also unique.

Now let us prove the theorem. Let #y be a point in 7". For every point
D € (X — 5™, denote by L(D) the invertible sheaf on X or on Xp
corresponding to the divisor D. By Lemma 3.3, the set

(D e X—-5™ | dimH' Xy, L, LMD)) = 1, dim H*(X, £, ® L(D—m)) = 0}
is non-empty (and open). Fix an element D in this set. Consider the set
U, ={teT|dmH Xn, L ® L(D)) = 1, dim H(X, L; ® L(D — m)) = 0} .

This set is open by the Riemann-Roch theorem and Theorem 1.1 (b). Obviously
it contains 9. So U, is an open neighbourhood of #,. By the theorem with
the extra assumption that we have already proved, there exists a unique
morphism f/Ut(): U, — Jm such that the pull-back of L, by id X fbtﬂ 1s
(L ® p* LD — mPy))|x,, xu, - Put i :f/Uto +a, where a is the point in Jy,
corresponding to the divisor class 7Py — D in CY . Obviously the pull-back
of Ly, by the morphism id X fy, is £ ‘meUxO' Moreover, such an fy, = is
unique. So we can glue fUt0 together to get f: T — Ji .




	6. Generalized jacobians and Picard schemes

