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2.2 A FUBINI COUNTEREXAMPLE

In this section, we give an example of (2). Let A be as in (5) and define
pla by
0 if A is meager,

(11) H(A) == {

1 if A is comeager.

This 1s possible, since no set A C R is simultaneously meager and comeager,
for otherwise @ = A N A° would be comeager, in contradiction to Baire’s
theorem. It is easy to check that p is a probability measure on (R,.A).
Let again v := X := Lebesgue measure on 5 := B(R), and choose A € A
meager with A(A°) = 0. Then 14(- + y) is A-measurable with

/RlA<x+y)du<x>:u<A—y> ~0 (ER).

On the other hand, we have

/IA(x—i—y)dZ/(y):)\(A——x):oo (x e R).
R

Hence (2) is obviously true in this case.

3. MEASURABILITY

Here is a positive result, having a certain measurability property of F
from (1) among its conclusions. An application of this occurs in Mattner
(1999).

3.1. THEOREM. Let (X, A, n) and (V,B,v) be o-finite measure spaces,
let f: X x Y — [0,00] be a function measurable with respect to the product
o-algebra A® B, and put

Ao = o({f(,y) : y€ IV},

By = o({f(x,)) : x€ X}),
Ag:={Ac A:3Ay € Ay with A=Ay [u]},
Bo:={Be€B : 3By € Ay with B=By [v]},

A @By ={Cc A®QB :3Cyec Ay ® By with C=Cy [p@v]}.

Then f is Ay ® By-measurable, fy fC,y)dv(y) is Ay-measurable, and
fxf (x,)dp(x) is B -measurable.
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Here and in what follows, we write A = Ag  [u] for u(AaAg) = 0. Below

we also use the corresponding notation f = g [u] for functions, meaning

p{x 1 f(x) # g0)}) = 0.

3.2

a)

b)

REMARKS

Let us retain the notation and assumptions of Theorem 3.1.

The parameter integral | v f(-,y)dv(y) need not be Ag-measurable and f
need not be Ay ® By-measurable, as the example in 2.1 shows.

The function f need not be Ay ® By-measurable. As an example provmg
this remark, we may take (X, A, ) := (¥, B,v) := ([0, 1], B[O, 1D, Ah,

D :={(x,x) : x€[0,1]}, and f := 1p. [We now write A\ for d-dimen-
sional Lebesgue measure.] Then

Ao = By = {A € B([0,1]) : A countable or cocountable} ,
Ao = By = {A e B(0,1]) : A'(A) € {0,1}} ,

and we claim that f is not 4y ® By-measurable. To prove this, put

1
= {CEB([O,I]z): (,\2(0),/ 1C(x,x>dA1(x)> c {(0,0),(1,1)}}.

0

Then C is a o-algebra containing {A XxB:A€eA,Be BO}, and hence
satisfies Ay ® By C C. But D ¢ C, so that D ¢ Ay ® By.

Let us write more explicitly Ao(x) in place of Agy. From Theorem 3.1,
we may deduce the measurability of F := [ f(-,y)dv(y) with respect to
N u Ao(i), the intersection being over all A and p as in the theorem.
This, however, must not be confused with the more restrictive property
of universal Ag-measurability of F [see Cohn (1980), pages 280-283,
for the definition and for illuminating facts]. Indeed, our measures p are
supposed to be defined on some A rendering f A ® B-measurable,
and not merely on Ay or its p-completion. For example, in the
situation of 2.1, one can use the measure p from (11) to deduce
that the o-algebra of all universally .Ap-measurable sets is contained
in Ao = {A C R : A meager or comeager}. Since .Ao differs from
Ao only by non-Borel sets, we see that F from (3), (7), (8) is not
universally Ag-measurable. By the way, the known fact that u from (11)
can not be extended to a measure on B(R) [see Oxtoby (1980), page 86]
follows from our present considerations, since otherwise we would have

Ao() = Ay N BR) = Ay, and Theorem 3.1 would yield Ag-measura-
bility of F.
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3.3 PROOF OF THEOREM 3.1

Obvious arguments show that we may assume in addition that
(12) W, v are finite and f is bounded.

The proof of the theorem splits into two parts as follows.

CLAIM 1. Under the assumptions of the theorem and (12),
(13) F = /f(-,y)du(y)

is Ag-measurable.

Proof. Let us first recall the “mean value theorem” for vector valued
integration: Let E be a topological vector space, (£,.4, ) be a measure
space, and g: £ — E be a function. Then an x € E is called the weak (or
Pettis) integral of g, and we write [ gdp := x, if

(1) the dual space E’ of E separates points on FE,

(i1) the scalar function (y, g(-)) belongs to L£}(Q, A, u) for every y € E’,
and

(i) [(y, gw)) du(w) = (y,x) for every y € E'.

[This is the definition adopted by Edwards (1965), p.566, and by Rudin
(1991), p.77.] If now E is in particular locally convex Hausdorff and p is
bounded, then the weak integral, if it exists, necessarily satisfies

(14) / gdu € Q) - oV g(Q),

with conv indicating convex closure. This “mean value theorem” is surely
well known. It follows easily from the Hahn-Banach theorem: Apply Theorem
3.4 (b) of Rudin (1991) to A := {fgdu} and B := pu(£2) - conv g(£2).

We now start with the proof proper. The functions f(-,y): X — R, as well
as F from (13), are .4-measurable [by A&B-measurability of f and by Fubini]
and bounded, and hence belong to L1(X, A, u). Let [f(-, )], [F] € LI(X, A, 1)
denote their corresponding equivalence classes. We claim that

(15) [F]:/[f(',y)]dV(y),
y

in the weak sense recalled above, applied to the Banach space E = L'(X, A, 1)
with dual space L*°(X, A, ). To prove this, let h € [h] € L°(X, A, ). An
obvious Fubini calculation, using the definition of F' and the A® B-measura-
bility of f, yields
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([n],[F]) = / h(0)F(x) dp(x) = /([h]7V(',Y)]>dV@),
X Y

which confirms (15). [Actually, (15) is even true with the right hand side read
as a Bochner integral, but we do not need this fact here.] We now use that
each f(-,y) is Ag-measurable, where of course Ay C A. This implies that
the function y — [f(-,y)] takes its values in

S = {<I> e LY(X, A, 1) : 3. Ap-measurable ¢ € CIJ} ,

which is easily seen to be a closed subspace of LY (X, A, ). The mean value
theorem (14) now yields [F] € S, which is the desired conclusion. L]

CLAIM 2. Under the assumptions of the theorem and (12), and assuming
the truth of Claim 1, f is Ay ® Bo-measurable.

Proof. We consider the restrictions
Ho = /“L~Zo’ Yo = Vlzo’

and define a function 7: Ay ® By — [0, 00] by

(16) 7(C) 2:/ /f(x,y)lc(x,y) dvo(y) diigx) (€ € Ay ® By),
xJy

and we emphasize that the right hand side has to be read as an iterated
integral. In order to show its existence, we have to check that the function
x = [1,£0 ) 1e(x,y) dvg(y) is Ap-measurable. For the special case C = Ax B
with A € Ay and B € By, this follows from Claim 1, applied to A
in place of Ay and f(x,y)lg(y) in place of f(x,y), and using Ay = Ay.
The general case follows as usual via Sierpifski’s lemma [Satz 1.6.8 in
Elstrodt (1996)]. Thus 7 is well-defined. It is easily checked that 7 is a
measure, and that every set of i, ® Vp-measure zero is of 7-measure zero
as well. Hence the Lebesgue-Radon-Nikodym theorem yields the existence of
an Ay ® By -measurable function f: X x' Y — [0,00] such that

7(C) = /fdﬁo R Ty (C € Ay® Bp).
c
By (16) and Fubini, this implies in particular
an [ [renanedie = [ [T e
Ao By Ao By

(Ag € Ay, By € By). Since, using (12), both sides in (17) are always finite,
we may conclude for every By € By :
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| fC3)dmo0) = G dv(y) [l
0 Bo

Trivially, this remains true if [f,] is replaced by [n], and an integration yields

A A

(18) / / £5,y) dTo(y) dpu(x) = / / 6, 1)d700) du(o)
By By

(A € A, By € By). We now want to interchange the order of integrations.
Since ]7 is trivially A ® By-measurable, we may obviously do this on the
right hand side of (18). To do the same on the left hand side, we rewrite it
successively as

/ / F6,y) du(y) du) = / / F6,y) dpa() du(y) — / / £, 9) dpd) dTo0)
AJ By By JA ByJA

where the last equality follows from a second application of Claim 1, with
the role of the variables interchanged. Thus (18) yields

(19) / / 05, 30 gt dRet) = / / Tz, PIdulx) dvots)
By A Bo A

(A € A, By € By). Now the argument leading from (17) to (18) can be
repeated to lead from (19) to a corresponding statement with B in place of
By, v in place of 7y, and B in place of By, which is equivalent to

/fdu@w:/ fdu®v (A€ A BeDB).
AXB AXB

This shows that f = f [p ® v], which yields the desired conclusion. []
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