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30 LEI FU

immersions. Given v € V', we need to show there exists x € V/ such that
(x,v) and (v,x) are in Z’. This is true if v € V by the property of Z. If
v €V, then v = a; for some a € V. We leave it to the reader to show that
(x,a5) € Z, and (as,x) € Z, for generic x in V. This completes the proof of
the lemma.

The above lemma allows us to replace V by V’, hence to expand V
whenever there exists a point s in V such that vs is not defined for all
v € V, and we can expand V' if there exists a point s* € V' such that v's’ is
not defined for all v’ € V’. Denote the result of finitely many such expansions
also by V/, and let U C V x V x V' be the closure of I". By Lemma 4.3
applied to V’, the projection pjp: U — V x V is an open immersion. Its
image is the set of points (a,b) such that m: V x V — V'’ is defined at
(a,b). If V x s ¢ p;p(U) for some point s in V, then replacing V' by
V' UV, increases both V' and pio(U). Using noetherian induction on open
subschemes of V x V, we may assume that after finitely many expansions,
V x's C p1p(U) for all points s € V. Then we have pj,(U)=V x V.

PROPOSITION 4.5. Let V, V', and U be as above. If pi1o(U) =V x V,
then the operation m: V' x V' — V' is everywhere defined on V' and makes
V' an algebraic group.

Proof. Take (a’,b") in V' x V'. Choose a point x so that a’x and x~'d’
are both defined and lie in V. Then we can define m(a’,b") = (a’x)(x~'b").
Similarly one can define @’~'4’ and b'a’~!. In this way we extend m, @,
¥, & ! and ¥~! to V' x V. The verification of the group axioms is routine
and is omitted.

5. FUNDAMENTAL PROPERTIES OF GENERALIZED JACOBIANS

Keep the notations in §3. We have proved that there is a birational group
structure on (X —S)"™ . The algebraic group associated to this birational group
is called the generalized jacobian of X, and 1s denoted by J,. It is a
commutative algebraic group.

Let Dy be a divisor on X prime to § of degree 0. By Lemma 3.3, the
set

Vo, ={D € (X =)™ | In(D +Dy) =1, D+ Dy —m) = 0}

is a non-empty open subset of (X — S)™. We have the following
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LEMMA 5.1. There exists a unique morphism of varieties
ap,: Vp, — (X — 8™

such that ap,(D) is the unique effective divisor m-equivalent to D + Dy for
any D € Vp,. Moreover «p, is birational.

Proof. Consider the Cartesian squares

X X Vp, C X X (X — S)(W') £ X

/| l l

Vb C (X — 5™ —— spec(k) .

0

Let £ be the restriction to Xy, X Vp, of the invertible sheaf on Xy, x (X —$)™
that corresponds to the divisor D + p*(Dg), where D is the univer-
sal relative effective Cartier divisor. By Theorem 1.1(c) the sheaf ¢.L
is invertible. The canonical map ¢*¢.L — L induces a homorphism
st Oxpxvp, — £ ® (¢*g+L)~'. Using Remark 2.1, one can show that
the pair (£ ® (¢*q.L)~',s) induces a relative effective Cartier divisor on
(Xm X Vp,)/Vp, . Applying Proposition 3.1 to this divisor, one gets the existence
of ap,. For any D € Vp,, we have [ (D+ Dpy) =1 and I(D+ Dy —m) =0.
So there is one and only one effective divisor m-equivalent to D + Dg, and
this effective divisor is simply ap,(D).
We claim that a_p, is the birational inverse of ap,. We have

ap (V_p,) = {D| D € Vp,, ap,(D) € V_p,}
={D | D € Vp,, ln(ap,(D) — Do) = 1, lap,(D) — Dy — m) = 0}
- VDO N {D ’ [w(D) =1, I(D—m)= O}
= Vp, N V.

By Lemma 3.3 both Vp, and V| are open and non-empty. Since (X —S)™ is
irreducible, the set Vp, N V; is also open and non-empty, that is, ozgol(V_Do)
is open and non-empty. One can easily show that on this open set c_ Dy © Dy
is defined and is the identity. Similarly one can show o~ IDO(VDO) is open and

non-empty, and on it ap, o a_p, is defined and is the identity. So ap, is
birational.

We have a birational map ¢: (X —S)™ — J,, by the construction of J,, .
Let dom(y) be an open subset of (X — S)™ such that ¢|dom(p) 1S an open
immersion, Moreover we may assume that for any a € dom(y), both (a,x)
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and (x,a) lie in the set U defined in Lemma 3.4 (a) if x is generic, i.e., lies
in some open set. In particular, m(a,x) and m(x,a) are defined for generic x.
Let

Up, = Vp, Ndom(e) N ap ! (dom(y)).

Note that Up, is open and non-empty since (X —S)™ is irreducible and ap,
1s birational. Moreover p(D) and ¢(ap,(D)) are defined for any D € Up,.
Define

00(Do) = @(ap, (D)) — (D).

LEMMA 5.2. 64(Dg) does not depend on the choice of D.

Proof. Let D; and D, be two elements in Up,. We need to show that

©(apy(D1)) — @(D1) = p(ap,(D2)) — ¢(D2).
Choose D3 € Up, so that (ap,(D1),Ds3), (D1, ap,(D3)), (ap,(D2),D3) and
(D2, ap,(D3)) all lie in the set U defined in Lemma 3.4 (a). Such a D3 exists.
Indeed, if (ap,(D1),x), (D1,x), (ap,(Dz),x) and (Dy,x) all lie in U for
x lying in an open set O, then we may choose D3 to be any element in
Up, NON agol(O). Note that Up, N O N 04501(0) iS not empty since ap, 1S
birational and (X — S)"™ is irreducible.
We have

o(ap,(D1)) + ©(D3) = p(m(ap,(D1), D3)) ,
©(D1) + p(apy(D3)) = @(m(Dy, ap,(D3)) .
Since
m(ap,y(D1), D3) ~m ap,(D1) + D3 — Py ~wn Dy + Do + D3 — wPy,
m(D1, ap,(D3)) ~m Dy + ap,(D3) — wPy ~m Dy + D3 + Dy — P,

we have
m(ap,(Dy), D3) = m(Dy, ap,(D3)) .
Hence
©w(apy(D1)) + ©(D3) = p(Dy) + p(ap,(D3)),
that 1s,

w(ap,(D1)) — ¢(D1) = @lap,(D3)) — ¢(D3) .
Similarly we have

p(ap,(D2)) — w(D2) = p(ap,(D3)) — p(D3).
Therefore

w(ap,(D1)) — (D)) = @(ap,(D2)) — ¢(D7) .
This proves the lemma.
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Thus we have a well-defined map 6 : Div® — J,, from the set of divisors
of degree 0 on X prime to § to Jy,.

LEMMA 5.3. 6y is a homomorphism.

Proof. Let Do, Ey € Div® and let Fy = Dy + E;. Choose D € Up,,
E € Ug, and F € Ug, so that

(apy(D), agy(E)), (D, E), (m(cap,(D), ag,(E)),F) and (m(D,E), ag,(F))
all lie in the set U defined in Lemma 3.4 (a). We have

ap,(D) + op(E)+ F ~oy D+ Do+ E+Ey+F=D+E+F+ Do+ E,,
D+ E+oap(F)~m D+E+F+Fy=D+E+F+Dy+Ep.

So
m(m(ep, (D), oz, (E)), F) = m(m(D, E), g, (F))
Hence
p(m(m(op, (D), oz, (E)), F)) = o(m(m(D, E), ar, (F))
Therefore

wlap, (D)) + p(ag,(E)) + o(F) = o(D) + @(E) + p(ar,(F)),
or equivalently,
(plapy (D)) — (D)) + (p(ag,(E)) — 9(E)) = @(ap,(F)) — o(F).
This last equality is exactly
00(Do) + Bo(Eq) = 0p(Dy + Ey) .

So 6y is a homomorphism.

We define 0: Div — Jy, from the group of divisors on X prime to S to
Jm by

(D) = 0o(D — deg(D)Py) .

Obviously 6 is a homomorphism.
%"‘:i‘:
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PROPOSITION 5.4. The homomorphism 6 is surjective and ker(0) consists
of divisors m-equivalent to integral multiples of Py.

Proof. Assume y ., P; is in dom(p). We have
0(D_Pi) = 60(D_ Pi—mPo) = plan,(D)) — (D),
i=1 i=1

where Dy = . P; — wPy and D € Up,. We may choose D so that
m(3__, P;,D) is defined and is the unique effective divisor m-equivalent
to Z?:IPi + D — 7Py. Since ap,(D) is the unique effective divisor m-
equivalent to D+Dg = D+ |, P;—7Py, we have m(}__, Pi, D) = ap,(D).
Hence o(m(3_, Pi, D)) = @(apy(D)). So (3 L Pi) + (D) = plap,(D)).
Therefore @(ap,(D)) — (D) = (5, P;), that is,

e(ipi) :(p(i:Pi).

This is true whenever » . | P; is in dom(yp).

Since ©|dom(yp) 1S an open immersion, p(dom(y)) is an open subset of Jy, .
The image of ¢ contains this open subset. But J,, is generated by any open
subset. So we must have Im(f) = J,, and 6 is surjective.

Assume E € ker(f). Then 0y(E —deg(E)Py) = 0. Put Ey = E — deg(E)Py.
Then for any F € Ug,, we have

lag,(F)) — @(F) = Oo(E — deg(E)Py) = 0.

Hence ¢(ag,(F)) = ¢(F). But ¢ is an open immersion on dom(y). So we
have ag,(F) = F. Since ag)(F) ~n F + Ep, we have F ~y F + Ey. Hence
Ey ~m O, that is, E ~y, deg(E)Py. So E 1s m-equivalent to an integral
multiple of Py.

Conversely assume E is m-equivalent to an integral multiple of Py and
let us prove that 8(E) = 0. Again let Ey = E — deg(E)Py. Then Ey ~y 0.
Choose F € Ug, N Uy, where Up is the set Up, defined before by taking
Do = 0. We have

0(E) = Oo(Eo) = p(ag,(F) — @(F),
0(0) = w(ao(F)) — w(F).

Note that F 4+ Ey ~n F since Ep ~n 0. But ag,(F) is the unique effective ;_
divisor m-equivalent to F+ Ey, and op(F) 1s the unique effective divisor m-

equivalent to F'. So we must have ag,(F) = ap(F). Therefore 0(E) = 6(0) = 0.
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Regarding a point P in X — S as a divisor, we can calculate A(P). In this
way we get amap 0: X — 8§ — Jy.

PROPOSITION 5.5. The map 0: X — S — Ju is a morphism of algebraic
varieties.

Proof. let P X — S and let Dy =P — Py. Fix a D € Up,. Consider
the set W, = {R € X —S | [n(D+ R — Py) = 1}. By the Riemann-Roch
theorem, for any R in X — S, we have [,(D + R — Py) > 1. Applying
Theorem 1.1 (b) to the projection g: Xy X (X —S) — X — S and the invertible
sheaf corresponding to the divisor D + p*(D — Py), where D is the universal
relative effective Cartier divisor on X, X (X —8) and p: Xy X (X —=5) — X
is another projection, we see that W; is open in X — §. Similarly one can
show W) ={Re€ X —S|I(D+R—Py—m) =0} is also open in X —S. So

W=WNW,={ReEX—S|ln(D+R—Py)=1, KD+R—-Py—m)=0}

is open in X — §. It is non-empty since P € W by our choice of D. By
Proposition 3.1 we have a morphism ~v: W — (X —S)™ of algebraic varieties
such that for every R € W, ~v(R) is the unique effective divisor that 1s m-
equivalent to D+ R — Py. Since ag_p,(D) 1s the unique effective divisor that
i1s m-equivalent to D + R — Py, we have y(R) = ag_p,(D). Replacing W by
an open subset containing P, we may assume Im(vy) C dom(yp). Note that for
any R € W, we have D € Ug_p,, and

O(R) = Oo(R — Po) = @((or—py(D)) — p(D) = ©(v(R)) — (D),

that 1s, 8(R) = @(v(R)) — (D). So 0 = p o~y — (D) on W. This proves 6
is a morphism of algebraic varieties in an open subset containing P. Since
P c X — S is arbitrary, 6 is a morphism of algebraic varieties.

The morphism 6: X — S — J,, induces a morphism of algebraic varieties
0: (X —HM — J,.

PROPOSITION 5.6. 0: (X — )™ — J., coincides with the birational map
©: (X — 8™ — J. In particular ¢ is everywhere defined.

Proof. Let Y ", P; € dom(yp). By the proof of Proposition 5.4, we have
(o P)=0C"", P). So ¢ =0 as rational maps.

Thus there is no difference between ¢ and 6. From now on we denote

the map ¢ also by 6. We summarize what we have so far in the following
theorem.
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THEOREM 1. There is a morphism of algebraic varieties 0: X — S — Jy
satisfying the following properties :

(a) The extension of 0 to the group of divisors on X prime to S induces,
by passing to quotient, an isomorphism between the group C° of classes of
divisors of degree zero with respect to m-equivalence and the group Ju, .

(b) The extension of 0 to (X — S)™ induces a birational map from X™
t0 Ju .

The following theorem characterizes J,, by a universal property :

THEOREM 2. Let f: X — G be a rational map from X to a commutative
algebraic group G and assume m is a modulus for f. Then there is a unique
homomorphism F: J, — G of algebraic groups such that f = F o0 + f(Py).

Proof. Replacing f by f — f(Py), we may assume f(Py) = 0. Since
m is a modulus for f, the extension of f to the group of divisors of X
prime to S induces a homomorphism CY — G by passing to quotient. By
Theorem 1(a) we have J,, = C% as groups. So we have a homomorphism
of groups F:J, — G such that f = F@. It remains to prove F is a
morphism of algebraic varieties. By Theorem 1 (b) we have a birational map
0: (X — S — J,. Denote the extension of f to (X — S)™ by f’. Then
FO = f’. Since 6 is birational, it induces an isomorphism between an open
subvariety of (X — $)™ and an open subvariety of J,,. Moreover f’ is a
morphism of algebraic varieties. Hence F' i1s a morphism of algebraic varieties
when restricted to some open subset of J.,. The whole J,, can be obtained
from this open subset by translation. So F' is a morphism of algebraic varieties.

6. GENERALIZED JACOBIANS AND PICARD SCHEMES

In this section we prove Jy, is the Picard scheme of X, .
Let T be a k-scheme. Consider the Cartesian square

Xo xT —— X

'] l

T —— spec(k) .

We have ¢.Ox. xr = Or by [EGA] 111, §1.4.15, the fact H'(Xy, Ox,,) =k, -
and the fact that T — spec(k) is flat. The morphism ¢ has a section
s: T — X XT, t— (Po,t).



	5. FUNDAMENTAL PROPERTIES OF GENERALIZED JACOBIANS

