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264 M. BALAZARD

Enfin,
I vn(y/x)v(y/x) \ < n2aK2A0(2loglog 3x + Ks)"'1 log"" x.

L'inégalité fondamentale au rang n + 1 résulte donc de:

nA0(L + Al)n~\L + K3+ K4) + Ki(L+
+ nK\K4{L+ K3)n~l + 2aK2A0n+ K3)n~l 1 + A,)"

où L 2 log log 3x, et cela est vrai, vu les définitions de A0 et Ai.
En conclusion,

dTl dr + (log c)6 + tdv

donc

d'où

dN edncedT * (tedc(ô + *

N(x)cj '

fX dv V" u"(x)
ex e ex + ex >ii ^ m

n> 1

L'inégalité fondamentale permet de majorer la dernière somme:

/ A 1 -a (21°gl°g 3x + Ai)n
1

A 2 _2^^r<Ao!og 7^1ïvA0e (log3x) log x,
n> 1

' n> 1
V J'

d'où le résultat.

4. Une application

Dans ce paragraphe, nous proposons une variation sur un thème abordé

dans [2] à propos de la fonction d'Euler.

THÉORÈME 9. Soit ß une suite de nombres premiers généralisés telle

que ßn diffère du n-ème nombre premier usuel pn par une quantité 0(na),
où 0 < a < 1. On a alors, pour tout c fixé, c < y/2(l — a),

e(x) <C C{x)~c,

pour x > 3 où£(x):= ev"0**1«*10«*.
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Observons que le résultat pour a 0 découle du cas a > 0 ; nous

supposons donc a > 0 dans la suite. Dans le cas particulier où la différence

ßn—Pn est constante, la méthode de [3] donne un meilleur résultat, comparable
à l'estimation de Korobov et Vinogradov du terme d'erreur dans le théorème

des nombres premiers.
La démonstration du théorème repose sur les lemmes suivants.

LEMME 4. Sous Vhypothèse du théorème 9 et en notant Iii et YI2 les

fonctions associées respectivement aux suites (pn) et (ßn) comme dans la

proposition 4, nous avons :

fx d(Xl2 - Ui)(t) n/ -VJl ViliogjD + 0(xa~l)JitOÙ

dn1 ~ Vf;.

Démonstration. Soit K un nombre entier fixé, supérieur à l/a. Nous
avons :

fX d(U2 — rii )(/•) yr 1 1

^ ~
k*kßkn

ßnk~PnkEL(*"*)+ E
k=l n>l,k>K

°( E £)+<>( E
k>K,ßt>x Pn

k>K,pk>x n

OU

ßn<t 1 P„<tPn

La majoration de Tchebycheff pour la fonction de comptage des nombres
premiers nous donne:

E î« E
1 xl'k

k>Ky.<*k AT<*<fc/log2

et de même,

E îk
k>KJ3^<x
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Par conséquent,

£ ißi+ £ 4c
>V Rk\ ^n V ^k^v ln J X

C+oo

<x*_1 <xa_1.
/

k>K,ßk>x n k>K,pk>x
'

Maintenant,

At(0 E^«~*
pn<t

OÙ

£*«:= E &"* + £ ÄT"-
Pn<tjßn>t pn>t,ßn<t

Comme pn — ßn 0(fta), et pn ~ n log n, on a, pour une constante positive
convenable // et pour tout fc fixé :

^ ja—kEk(t)< E r* < -—-z-^ log
|/?n—r| <//?ä

d'après l'inégalité de Brun-Titchmarsh. Il en résulte que

K-1

kE « ^_1
fc=l

Comme d'autre part,

Es E
&=1 pn<xl/k n>l,l<k<K 1 <k<Kpk>x

il suffit pour conclure de vérifier que pour chaque k fixé, on a:

Pn>X{/k

Or \ßnk ~Pnk\ <^nap~k~l donc

Pn>t

d'où le résultat.

+oo
ua-k~ldu « f~k
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LEMME 5. Soit da une mesure et b un nombre réel positif tels que

(i) \\da\\x log log 3x, x > 1 ;

(ii) a(x) <C x~~b, x > 1.

Soit dß eda, dj(t) » tdßit) et dp JAh * dj, où Nft) |r|.
powr towte constante c < y/2b, on a :

(iii) /?(x) - 1 + 0{C{x)~c), x > 3 ;

(iv) 7(x) <C xC(x)~c, x > 3 ;

(v) /i(x) x + 0(£(x)_c), x > 3.

Démonstration. Le lemme 2 s'applique avec:

A(x) Mi log log 3x, B(x) M2 C(m)

où Mi et M2 sont des constantes positives. Nous obtenons:

Jl n>0
'

77 > 1

i + E+E>
«<£ n^>K

où est un paramètre, choisi ultérieurement.

Nous avons pour n > 1,

KO)[ (Mt log log 3x + OÇl))"-1 _6!otv

«! (n —1)!

La formule de Stirling et un calcul facile montrent que cette dernière

quantité est maximale pour

n
J(2b + o(l))

l0g*
y log log x

et est donc, pour tout n > 1 :

« £(xr*®+o(i).

Si nous choisissons K logx, par exemple, cette dernière estimation se

transmet à J/n<K. Quant au reste, il est

(Mi log log 3x + 0{ 1 ))n~1
< 2^ (n _ < exp(-(l + o(l))logxloglogx)

77 > log X

donc négligeable: l'assertion (iii) est démontrée.
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L'assertion (iv) résulte d'une simple intégration par parties:

j^ tdß{t) xß(x) — ß(t)dt

«i£W^/lï+"(1) +

« xC(;crvS+o(I)

Pour démontrer l'assertion (v) nous employons de nouveau la méthode de

l'hyperbole :

/y
r-^/y

7 {ß)dNßt) +j Ni(^jdy(t) - Ni(y)j(^j

+^(-) +0(\\d1\l/y) + 0{x
n<y

U J

d'après (iv) et l'égalité

",(;) y+ 0<i,

Or

¥ll \tdßm\ t\dß\(t)<< < z(log3z)M|
'1 J 1

pour z > 1. Par suite, en utilisant (iii) et (iv),

H(x) x +0(x(logy)C(x/yyVrb+o(1)) + log 3 /y).

En choisissant y avec e positif assez petit, on obtient l'assertion (v).

Nous pouvons maintenant achever de démontrer le théorème 9. Soit N2

la fonction de comptage des nombres entiers généralisés engendrés par la

suite ß. En utilisant les notations des lemmes 4 et 5, posons :

d{n2 -nO (logD)<5 + dX

da(t) —-—

de sorte que, d'une part,

\\da\\x<J |(|iogD|ô + dn2 + dn,Xf)

< 21oglog(3x) + 0(1),
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a(x) <C xa
1

et d'autre part (lemme 4),

Or,

dN% edU2 * edU2-m' dNi * e^D)6+dX DdN\ * d-y

où d^y(t) tedoiit). Le théorème résulte donc de l'assertion (v) du lemme 5.
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