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264 M. BALAZARD

Enfin,
(VU (V/X)| < n2°KrA0(2log log 3x + K3)" ! log ™ x.

L’inégalité fondamentale au rang n + 1 résulte donc de:
nAo(L + A1) (L + K3 + Kq) + Ki(L + K3)"
+ nK 1 Ky(L + K3)" ™' + 2°KoAon(L + K3)"™' < (n 4+ DAL + A))",

ou L := 2loglog3x, et cela est vrai, vu les définitions de Ay et A;.
En conclusion,
dIl = d7 + (log¢)6 + tdv

donc
dN = ™ = ¢ x (te™) = (6 + di) * (te®)

d’ou

X x/u
N(x):c/ (/ 5+dt>ued”
1 1
_ * dv Vn(x)
—cx/le —cx—l—cxz o

n>1

L’inégalité fondamentale permet de majorer la dernieére somme :

Vn(X) L (2loglog3x+Ap)"' 2 e —a
> = < Aglog > — — Age™ (log 3x)2 log “ x

n>1 ' n>1

d’ou le résultat.

4. UNE APPLICATION

Dans ce paragraphe, nous proposons une variation sur un theme abordé
dans [2] a propos de la fonction d’Euler.

THEOREME 9. Soit  une suite de nombres premiers généralisés telle
que (3, difféere du n-éme nombre premier usuel p, par une quantité O(n%),
ou 0 <a< 1. On a alors, pour tout ¢ fixé, ¢ < /2(1 — a),

e(x) <€ L(x)™°,

pour x >3, on L(x):= eViogxloglogx
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Observons que le résultat pour a = 0 découle du cas a > 0; nous
supposons donc a > 0 dans la suite. Dans le cas particulier ou la différence
B, —pn est constante, la méthode de [3] donne un meilleur résultat, comparable
a I’estimation de Korobov et Vinogradov du terme d’erreur dans le théoreme
des nombres premiers.

La démonstration du théoreme repose sur les lemmes suivants.

LEMME 4. Sous [’hypothese du théoreme 9 et en notant Il et I, les
fonctions associées respectivement aux suites (p,) et (53,) comme dans la
proposition 4, nous avons:

/x d(1l, — I1;)(®)
1

» =logD + O(x*"1)

ou

1—1/p,
D:H———.
71211_1/5’1

Démonstration.  Soit K un nombre entier fixé, supérieur a2 1/a. Nous
avons :

A —TI)() 1 1
[ Y

6k <x n p}]; SX kpn

n—

K—1
1 Bk —prk
— E ~A 1/k E : n Pr
£ 2 k(x )+ ‘——k

n>1,k>K
1 1
+o( 3 o X o)
k>K, Bk>x k>K,pk>x — 1

RN EDIES

B <t n Dn <t pn

La majoration de Tchebycheff pour la fonction de comptage des nombres
premiers nous donne:

DRSS

k>K, pk<x K<k<logx/log?2

Z %<<xI/K.

k>K,Br<x

1/

1/K
ﬂlog(xl/k) <X

&=

et de méme,
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Par conséquent,

1 1 ee -2 L1 —1
Z k_,6k+ Z @<<,/x PR < xFT o x4

k>K,Be>x T k>K pk>x

Maintenant,

M) = Y (875 = p ) + OE(1))

Pn<t

E= ) B+ > B*

Pn<t,B,>t Pn>t,08, <t

Comme p, — B, = O(n*), et p, ~ nlogn, on a, pour une constante positive
convenable H et pour tout k fixé:

—k

E (¢ €
RS D R T
|pn—t| <Ht*

d’apres 'inégalité de Brun-Titchmarsh. Il en résulte que

K—1

1
Z %Ek(xl/k) < x+ 1,
k=1

Comme d’autre part,
K—1 1 ) ) Bk _p—k Bk _p—k
— —kyN _ n n_ n n
Z 2 Z B —pn") = Z k Z Z 2 ’
k=1 " p,<xl/k n>1,1<k<K 1<k<K pk>x

il suffit pour conclure de vérifier que pour chaque k fixé, on a:

> 1B =t <t

pn>xl/k
Or |B7% — pr*| < np, ! donc
+o0
Z mn"k —p,,,_k| < / uldu < 1 *
pa>t !

d’ou le résultat. ]
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LEMME 5. Soit do une mesure et b un nombre réel positif tels que
(i) ||dal|, < loglog3x, x=>1;
() al) <x7b, x>1.

Soit dB = ¢, dy(t) = tdB(t) et du = dN;y xdv, on Ni(2) = |t]. Alors,
pour toute constante ¢ < \/2b, on a:

(i) Bx) =1+0CLX™), x=3;
(iv) 7)) <xL(x)™F, x=3;
(V) plx) =x+0(Lx®™), x=3.

Démonstration. Le lemme 2 s’applique avec:
A(x) = M, loglog 3x, B(x) = M,, Cu) = e,

ol M, et M, sont des constantes positives. Nous obtenons:

o )_/ PRI ghiC

n>0 n>1
=1+> +> ,
n<K n>K

ou K est un parametre, choisi ultérieurement.
Nous avons pour n > 1,

| cn ()| < (M, loglog3x + O(1))" ! bhr
n! (n—1)!

La formule de Stirling et un calcul facile montrent que cette derniere
quantité est maximale pour

\/ 2b + 0(1))10g 10; -

et est donc, pour tout n > 1:
< [,(X)~\/§E+O(U.

Si nous choisissons K = logx, par exemple, cette derniére estimation se
transmet & ) . Quant au reste, il est

(M loglog 3x + O(1))*!
< Y T < exp (—(1 + o(1)) log xlog log x)

n>logx

donc négligeable: 1’assertion (iii) est démontrée.
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L’assertion (iv) résulte d’une simple intégration par parties :
[ s =66~ [ g
1 1

& xﬁ(x)—\/%+0(1)_|_/ E([)—\/Z_b—l-o(l)dt
1

< xﬁ(x)—\/2—b+0(1) ’

Pour démontrer I’assertion (v) nous employons de nouveau la méthode de
I’hyperbole :

plx) = /ly 7<§>dN1(t) + /X/y N, (J—;)dv(t) — Nl@)7<§>

a Z ( ) ”5( ) + 0l dll,,) + O (xL(x/y) ™Y 2HoD)

d’apres (iv) et 1’égalité

N]<)—;> = ’;C +o(1).

Or
ldvll, = / |tdB(1)| = / t|dB|(1) < z||dB||, < zell**le < z(log 32",
| 1

pour z > 1. Par suite, en utilisant (ii1) et (iv),

p() = x + OG(log Y)L(x/y)~V2!+D) + O(x(log 3™ /y) .

En choisissant y = x* avec e positif assez petit, on obtient I’assertion (v). []

Nous pouvons maintenant achever de démontrer le théoreme 9. Soit N,
la fonction de comptage des nombres entiers généralisés engendrés par la
suite (3. En utilisant les notations des lemmes 4 et 5, posons:

d(II, — IT;) = (log D)o 4+ d X,
da(r) = d>\(z)

de sorte que, d’une part,

1
lda||, < / ;(Ilongé + dIl, + dIT;)(2)
I

< 2loglog(3x) + O(1),
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et d’autre part (lemme 4),

a(x) < x

Or,

dN, = ¢/ = M « A=Al — N x (108 DIHIA — DN, * dy

ou dv(t) = tee(¢). Le théoréme résulte donc de I’assertion (v) du lemme 5.
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