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260 M. BALAZARD

PROPOSITION 4. Avec les notations du paragraphe 1, on a:
dN = M
on TI(x) := P(x) + 1P(x/%) + 1Py + ...

Cette proposition traduit I’identité eulérienne formelle :

1 1 1
Z_Jznl__l_:exp Z kﬁks'

n>1 " n>1 B3 n>1,k>1 n

Ainsi, la théorie de Beurling ressortit a 1’étude de 1’exponentielle et du
logarithme dans 1’algebre de mesures M.

FORMULAIRE

Nous donnons ci-dessous une liste de propriétés d’usage constant pour le
calcul dans M.

1. La multiplication par " est pour tout nombre complexe r un automor-
phisme de ['algébre M. En particulier, pour toute série entiere f(z),
on a

'f(da) = f(f'da) .
2. dax 4 = a(t)fit—t.

(log 7)" "
(n—1)!

d
4. (5+dt)*(6—7t):6.

* 1 dt
“"”:/1 (1“?>@'

3. LA METHODE DE L’HYPERBOLE REVISITEE

3. (d)*™ = dt.

5. §+dt = €%, ou

Si daxdB = dv, on a

10 = [ dots = [ (3)ao = [ (3 )ds0

= [(8()aacr+ [ a(%)aso - ara(%)

pour tout x et tout y tels que 1 <y <x.
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Cette fagon de calculer un produit de convolution en introduisant un
parametre y, déterminé ensuite au mieux suivant la question considérée, a
été imaginée par Dirichlet dans [9]. C’est la méthode de I’hyperbole. L'idée
de Diamond est que ’itération de ce principe de calcul permet d’étudier des
mesures définies dans M au moyen de séries entieres comme au paragraphe
précédent, par exemple des exponentielles d’autres mesures.

On a immédiatement 1’estimation suivante :

LEMME 1. Si da et dB appartiennent a M, on a, pour dv = da * di
et x=yz,ou y>1, z>1:

VKX)ISEHdaHysug751+-Ndﬁﬁzﬁug!al%—hIOOﬁcﬁi-

(z,x

Le lemme suivant donne I’inégalité fondamentale dans la méthode de
Diamond :

LEMME 2. Soit da une mesure. Posons pour tout entier n > 1,
day, = (da)™

et supposons que :

D [ldel, < A®):;

2) |a@)| < B@)Clogx) < M,
o A et B sont croissantes au sens large et C décroissante au sens large, et
M est un nombre réel positif.

Alors, pour n > 1, n entier, et x > 1, x réel, on a:

(9] < (A + MY~ B(x) C(l—‘);gf) .

Démonstration. Observons pour commencer que I’hypothese 1) entraine :
ldan|l, < A",

pour n>1, 1 <z<x.
On procede par récurrence sur n. Le cas n = 1 est contenu dans I’hypo-

these 2]). Le passage de n a n+ 1 se fait en appliquant le lemme 1 avec
y=xwl, z=x+ et 8 =qa,. On a:

o1 (0] < nA0o) + My~ B (P22 ) Ay

+ Bx)C(log y)AX)" + Mn(A(x) + MY~ 1B(x)c( lig-f) .
n
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logz logx
Or logy = —8% _
r logy " " donc
logx n—1 n n—1

|1 ()] < B(x)C(———n . 1) [RAGAG) + M) + AR + Mn(AGx) + MY

1
< (1 DA + MY'BEIC(-22 ),

n—+1

ce qui démontre le lemme 2. [

Ce résultat fournit une estimation générale, facile a utiliser, comme nous
le verrons au paragraphe 4. Il faut cependant garder a I’esprit la possibilité
d’obtenir parfois de meilleures majorations grace a des renseignements
supplémentaires, spécifiques au probleme considéré.

Ainsi, nous allons conclure ce paragraphe en donnant la démonstration
complete du théoréme 6. Pour rédiger cette preuve, qui ne figure pas dans
[7], nous avons bénéficié de fructueuses conversations avec H.G. Diamond.

On démontre en fait un résultat plus fort que le théoreme 6. Soit donc f3
une suite de nombres premiers généralisés telle que (avec la notation de la

proposition 4)

* ATt 11—t
/ E_Q:/ dt + logc + O(log™“x) ,
Lt 1 tlogt

ou ¢ et a sont des constantes positives. Alors
N(x) = cx + O(xlog* ™ x) .

C’est 1’énoncé du theoreme 3.3a de [7]. Sa démonstration repose sur
I’inégalité fondamentale suivante. Si

dv :=t"'(dll — dr — (logc)é) et dy, := (dv)*",

alors
v, (%) < nAg(2loglog3x + A;)" ' log ™% x

pour n > 1,x > 1, ou Ay et A; sont des constantes positives. Observons que
I’application du lemme 2 donne ici un facteur supplémentaire n®.

Pour démontrer cette inégalité, on procede bien entendu par récurrence
sur n. Introduisons au préalable des constantes K;, K, et K3 telles que les
inégalités suivantes soient vérifiées pour x > 1:

lv(x)| < Kjlog™“x;
lv(x)| < Ka;
|dv]|, <2loglog3x+ K3 .
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LEMME 3. Sous les trois hypothéses ci-dessus, on a, pour n > 1 et x > 1,

Vx —t
/ Kl _ _lgg_t) — 1} |dv,| () < nK4(2loglog3x + Ky,
i logx

ou K4 est une constante positive.

Démonstration. S1 0 <u <1/2,ona (1 -—u)™—-1<Ku. [’inégalité
3 démontrer est claire si 1 < x < 2, pourvu que K4 soit assez grande. Si
x > 2, I'intégrale est

Vx Vx
< (logx)™" / log t]duy, () < (logx)™! / log t|dv|™ (1)
1 1

Comme la multiplication par logs est une dérivation de M, la derniere
intégrale vaut

V3 NN
n/ 1dy\*<”“”*(1ogz\du;)(z):n/ (/ \dy\’“”‘”) log t|dv ()
1 1

1

1 HE log ¢
< n(2loglog3x + K3) (dIT + d7 + |log c|0)

) t
a1 v ar
= n(2loglog 3x + K3) log t(dy + Z—t— + (logc + |10gc|)6>
1
< n(2loglog3x + K3)" 'logx,

d’ou le résultat. L]

On peut maintenant démontrer 1’inégalité fondamentale ci-dessus. Posons
Ap=K; et Ay = K3+ K4+ 2°K,. L'inégalité étant alors vérifiée pour n = 1,
supposons la vérifiée au rang n. Nous aurons, pour x > 1:

Vi Y
Vg1 () = /1 (3 ) v + /] (3 )dvat®) = i),

La premiere intégrale est majorée par

Va —
nA0(210g10g3x+A1)”°1/ (10g;) |dv (1)
1

< nAop2loglog3x + Al)”_1(2 loglog3x 4 K3 + K4)log™“ x.
La deuxieme intégrale est majorée par
% lo —8
_ gx
K log™ (1- =) v,
togx [ (1= 1255) Mlanjo
< Kilog™“x [(2loglog3x + K3)" + nKy(2loglog 3x + K3)" 1] .
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Enfin,
(VU (V/X)| < n2°KrA0(2log log 3x + K3)" ! log ™ x.

L’inégalité fondamentale au rang n + 1 résulte donc de:
nAo(L + A1) (L + K3 + Kq) + Ki(L + K3)"
+ nK 1 Ky(L + K3)" ™' + 2°KoAon(L + K3)"™' < (n 4+ DAL + A))",

ou L := 2loglog3x, et cela est vrai, vu les définitions de Ay et A;.
En conclusion,
dIl = d7 + (log¢)6 + tdv

donc
dN = ™ = ¢ x (te™) = (6 + di) * (te®)

d’ou

X x/u
N(x):c/ (/ 5+dt>ued”
1 1
_ * dv Vn(x)
—cx/le —cx—l—cxz o

n>1

L’inégalité fondamentale permet de majorer la dernieére somme :

Vn(X) L (2loglog3x+Ap)"' 2 e —a
> = < Aglog > — — Age™ (log 3x)2 log “ x

n>1 ' n>1

d’ou le résultat.

4. UNE APPLICATION

Dans ce paragraphe, nous proposons une variation sur un theme abordé
dans [2] a propos de la fonction d’Euler.

THEOREME 9. Soit  une suite de nombres premiers généralisés telle
que (3, difféere du n-éme nombre premier usuel p, par une quantité O(n%),
ou 0 <a< 1. On a alors, pour tout ¢ fixé, ¢ < /2(1 — a),

e(x) <€ L(x)™°,

pour x >3, on L(x):= eViogxloglogx
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