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260 M. BALAZARD

PROPOSITION 4. Avec les notations du paragraphe 1, on a:

dN edn

où n<» := P(x) + \P(x^2) + \P(x'/3)+

Cette proposition traduit l'identité eulérienne formelle:

£ 4 II Ar «e £ *&n> 1 n n> 1 ßsn n>\,k>\

Ainsi, la théorie de Beurling ressortit à l'étude de l'exponentielle et du

logarithme dans l'algèbre de mesures A4.

Formulaire

Nous donnons ci-dessous une liste de propriétés d'usage constant pour le

calcul dans A4.

1. La multiplication par f est pour tout nombre complexe r un automor-

phisme de l'algèbre A4. En particulier, pour toute série entière f(z),
on a

ff(da)=f(fda).
2. da* ja{t)f.

(lozt)n~l
3. (dt)*" \ ë 7. dt.

{n - 1)!
dt

4. (6 +dt)*(<5 — -) 8.

5. 6 + dt edT, où

rW := / 1 -
dt

t J logt

3. La méthode de l'hyperbole revisitée

Si da* dß dj, on a

7(x) J da(s)dß(t) ß(*^jda{s) a{^jclß(t)

ß(ßjda(s) +

pour tout x et tout y tels que 1 < y < x.
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Cette façon de calculer un produit de convolution en introduisant un

paramètre 3/, déterminé ensuite au mieux suivant la question considérée, a

été imaginée par Dirichlet dans [9]. C'est la méthode de l'hyperbole. L'idée
de Diamond est que l'itération de ce principe de calcul permet d'étudier des

mesures définies dans M au moyen de séries entières comme au paragraphe

précédent, par exemple des exponentielles d'autres mesures.
On a immédiatement l'estimation suivante:

LEMME 1. Si da et dß appartiennent à M, on a, pour dj da* dß
et x yz, où y > 1, z > 1 :

|7(x)| < ||rfa||ysup|/3| + \\dsup|a| +
[z,x] [y,*]

Le lemme suivant donne l'inégalité fondamentale dans la méthode de

Diamond :

LEMME 2. Soit da une mesure. Posons pour tout entier n> 1,

dan (da)*n

et supposons que :

1) \\da\\x < A(x) ;

2) |a(*)| < B(x)C(Logx) <M,
où A et B sont croissantes au sens large et C décroissante au sens large, et
M est un nombre réel positif.

Alors, pour n > 1, n entier, et x > 1, x réel, on a :

Ktoi < n(A(x) +M)n~lB{x)c.
Démonstration. Observons pour commencer que l'hypothèse 1) entraîne:

\\dan\\z<A(x)n,

pour n >1, 1 < z <x.
On procède par récurrence sur n. Le cas 1 est contenu dans l'hypothèse

2). Le passage de nà n+ 1 se fait en appliquant le lemme 1 avec
y z x^fï ,et ßan.Ona :

\an+l(x)\< «(A(x) + M)""16(x)c(^)a(x)

+ ß(x)C(logy)A(x)" + +



262 M. BALAZARD

i 1°%Z 1°&X aOr logy donc
n n + 1

\an+i(x)\ < B(x)C(^4)\nA(x)(A(x) + M)""1 + A(x)n + + M)""1!
\n + 1 /

< (n + l)(A(x) + M)nB{x)c(—\
\n + 1 /

ce qui démontre le lemme 2.

Ce résultat fournit une estimation générale, facile à utiliser, comme nous
le verrons au paragraphe 4. Il faut cependant garder à l'esprit la possibilité
d'obtenir parfois de meilleures majorations grâce à des renseignements

supplémentaires, spécifiques au problème considéré.

Ainsi, nous allons conclure ce paragraphe en donnant la démonstration

complète du théorème 6. Pour rédiger cette preuve, qui ne figure pas dans

[7], nous avons bénéficié de fructueuses conversations avec H. G. Diamond.

On démontre en fait un résultat plus fort que le théorème 6. Soit donc ß

une suite de nombres premiers généralisés telle que (avec la notation de la

proposition 4)

cJiî J î tlogt
où c et a sont des constantes positives. Alors

N(x) ex -H 0(x log2~"flx).

C'est l'énoncé du theorème 3.3a de [7]. Sa démonstration repose sur

l'inégalité fondamentale suivante. Si

dv := — dr — (logc)<5) et dvn := (dv)*n

alors

Wn(x) I < JïAq(2 log log 3x +Ai)n~l log~ax

pour n > 1, a > 1, où Ao et Ai sont des constantes positives. Observons que

l'application du lemme 2 donne ici un facteur supplémentaire na.

Pour démontrer cette inégalité, on procède bien entendu par récurrence

sur n. Introduisons au préalable des constantes K\, K2 et £3 telles que les

inégalités suivantes soient vérifiées pour x > 1 :

\v(x)\ < Kilog~ax;

< k2:Il dv\\<2 log log



MÉTHODE DE L'HYPERBOLE 263

LEMME 3. Sous les trois hypothèses ci-dessus, on a, pour n > 1 et x > l,

rv^r/ logr
1 Ï J -1

log Y
\di/n\(t) < nK4(2 log log 3x + K3)n

1

où K4 est une constante positive.

Démonstration. Si 0 < u < 1/2, on a (1 — u) a — 1 <C u. L inégalité

à démontrer est claire si 1 < x < 2, pourvu que K4 soit assez grande. Si

x > 2, l'intégrale est

rVx ryß

« (log x)
1 / log t\dvn\ (t)<(logx)

1 / log t\di/\*n(t).

Comme la multiplication par logt est une dérivation de Ad, la dernière

intégrale vaut

/y/x
ry/x ry/x/t v

|di/|*(n_1) * (logt\du\)(t) n j yj \dv\^n 1}J log t\dv\(t)

< n{2 log log 3x + K3)n
1 f ——(/ill + dr + |log c|<5)

t
yfxrvx

rc(2 log log 3x + K3)n~l J logtydv + 2— + (loge + |logc|)6J

< n(2 log log 3x + K3 )n log x,
d'où le résultat.

On peut maintenant démontrer l'inégalité fondamentale ci-dessus. Posons

Aq — K\ et Ai K3 + K4 + 2aK3. L'inégalité étant alors vérifiée pour n — 1,

supposons la vérifiée au rang n. Nous aurons, pour x > 1 :

rVx /vx ryfx
Vn+l(x)=s j vn (ç^dv{t)+J (yj - vn(y/x)v(y/x)

La première intégrale est majorée par

nA0(21oglog3x + A1)"~1 f (logj)

< «A0(21oglog3x + Ai)" (2 log log 3x + log "x.
La deuxième intégrale est majorée par

< Ki logx [(2 log log 3x + K3y + log log 3x + K3)n~l]
t>
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Enfin,
I vn(y/x)v(y/x) \ < n2aK2A0(2loglog 3x + Ks)"'1 log"" x.

L'inégalité fondamentale au rang n + 1 résulte donc de:

nA0(L + Al)n~\L + K3+ K4) + Ki(L+
+ nK\K4{L+ K3)n~l + 2aK2A0n+ K3)n~l 1 + A,)"

où L 2 log log 3x, et cela est vrai, vu les définitions de A0 et Ai.
En conclusion,

dTl dr + (log c)6 + tdv

donc

d'où

dN edncedT * (tedc(ô + *

N(x)cj '

fX dv V" u"(x)
ex e ex + ex >ii ^ m

n> 1

L'inégalité fondamentale permet de majorer la dernière somme:

/ A 1 -a (21°gl°g 3x + Ai)n
1

A 2 _2^^r<Ao!og 7^1ïvA0e (log3x) log x,
n> 1

' n> 1
V J'

d'où le résultat.

4. Une application

Dans ce paragraphe, nous proposons une variation sur un thème abordé

dans [2] à propos de la fonction d'Euler.

THÉORÈME 9. Soit ß une suite de nombres premiers généralisés telle

que ßn diffère du n-ème nombre premier usuel pn par une quantité 0(na),
où 0 < a < 1. On a alors, pour tout c fixé, c < y/2(l — a),

e(x) <C C{x)~c,

pour x > 3 où£(x):= ev"0**1«*10«*.
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