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256 M. BALAZARD
2. I”ALGEBRE M

DEFINITION

Pour tout x > 1, soit B, la tribu des boréliens de [1,x] et soit B = | ~, B«
I’ensemble des boréliens bornés de [1,+oco[. On notera M I’ensemble des
applications p: B — C dont la restriction a chaque tribu B, est une mesure
complexe (voir [14], chapitre 6). Dans la suite, les éléments de M seront
appelés simplement mesures. A titre d’exemple, observons qu’on peut associer
a toute fonction arithmétique f: N* — C une mesure g par la formule:

p=> f)é,,

n>1

ou 6,, a > 1, désigne la masse de Dirac au point a.
A chaque mesure p est associée?) sa “fonction sommatoire”

a(x) = p(l,x]), x=>1.

C’est une fonction complexe continue a droite, a variation bornée dans tout
intervalle [1,M], M < 4oc0. La correspondance ainsi établie entre M et cette
classe de fonctions est bijective. On écrit: u = da.

LA CONVOLUTION DANS M

Si da et df appartiennent a M, on définit leur produit de convolution
do x df par la formule?)

/da *xdf = / da(s)dB(t), Ee€B.
E steE

On montre que cette définition a un sens et que do * dfJ appartient a M.
Supposons, par exemple, que

do=7) f()6,, dB=) g,
n>1 n>1
ou f et g sont deux fonctions arithmétiques. Alors,

dooxdB =) h(n)s,,

n>1

3) L’emploi de la lettre o ne doit mener 4 aucune confusion avec la notation des nombres
entiers généralisés de Beurling o, .

4) Nous présentons ici la théorie multiplicative, en vue de son application au probleme de
Beurling. Il y a, bien entendu, une théorie additive isomorphe.
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Wy =+ g0) = >_fg(5)

dln

h est le produit de convolution de Dirichlet des fonctions arithmétiques f
et g.

La proposition suivante indique comment effectuer des calculs de convo-
lution.

PROPOSITION 1. Soif da et df3 des mesures et f une fonction borélienne
complexe sur [1,+o0[ bornée et a support borné. On a:

/f(u)da xdf :/ f(stda(s)dB(t) .

En particulier, pour tout x > 1,
/' daxdf = / Q<E>dﬂ(1) = / ,B()—C>da(s).
1 1 t 1 S

On notera (do)** la puissance n-éme de convolution d’une mesure do.

PROPRIETES DE M

[’addition, la convolution et la multiplication par les scalaires conferent a
M une structure de C-algébre associative, commutative et unitaire (I’élément
neutre étant & = 01).

Cette algebre est integre?). Ce fait, non trivial, résulte facilement d’un
important théoreme de Titchmarsh (cf. [16], Theorem VII).

I est facile de voir qu’un élément de M est inversible si et seulement si
sa masse au point 1 est non nulle. M possede un unique idéal maximal :

Moy ={da e M, a(l) =0}.

Diamond s’est intéressé aux dérivations de M, c’est-a-dire aux applications
C-linéaires D: M — M telles que

D(uxv)=p* D)+ D(u) x v
quelles que soient p et v dans M.
) On peut donc considérer le corps des fractions de M. C’est le corps des «opérateurs

de Mikusifski», base d’une présentation originale du calcul opératoriel. Dans [13], Mikusidski
développe cette théorie, qui a des liens avec celle des distributions (cf. [15], p. 254).
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THEOREME 8 (Diamond 1968, [6]). Les dérivations de M sont les
applications de la forme

p— po * (logz. p),

Lo €tant un élément fixé, arbitraire, de M.

On notera L la dérivation fondamentale dans M, a savoir la multiplication
par la fonction logz.

TRANSFORMATION DE MELLIN

Si da appartient a M, I’ensemble des nombres réels o tels que I'intégrale

+oo
/ 1~ %do(t)
1

converge ®), a une borne inférieure o.. La fonction

+o0
F(s) = / tda(t),
1

appelée transformée de Mellin de da, est alors définie et holomorphe dans le
demi-plan %(s) > o.; elle peut éventuellement se prolonger analytiquement
au-dela.

La propriété fondamentale de la transformation de Mellin est la suivante.
Si

“+oo
G(s) = / dB(), df e M,
1
alors

+o00
H(s) := / 1 dox df(t) = F(s5)G(s)
1

pour tout s tel que les trois intégrales convergent, par exemple pour tout
s = o + it tel que

“+oo “+oco
/ t77\da(t) < +o0 et / t71dB|(t) < +o0.
1 I

Observons également que la transformée de Mellin de L(da) est —F'(s).

6) Nous entendons par 13 I’existence de la limite limy— oo J lx 1~ %da(t).
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TOPOLOGIE

Pour tout x > 1, la relation
\da||, == / |da), dae M,
1

définit une semi-norme sur M. Si da et df appartiennent a M, la mesure
|da| % |dB| — |da x dB| est positive donc on a I’inégalité :

|de + dB|l, < [lde]|[ldB]l,

qui montre que la famille de semi-normes (|| || )x>; munit M d’une structure
d’algebre topologique. Cette algebre est complete.

CALCUL FONCTIONNEL

L’emploi dans M des séries entieres a coefficients complexes est fondé
sur la proposition suivante.

PROPOSITION 2. Soit f(z) = ano a,?" une série entiere complexe, de
rayon de convergence p > 0. Alors7),

1) flda) := ano a,(do)™" converge dans M si |a(1)| < p;
(i1) la série ano a,(do)*" diverge dans M si |a(l)| > p;

(i) da v f(da) est continue dans l'ouvert de M défini par
la(D)] < p;

(iv) pour do dans cet ouvert, on a L(f(de)) = f'(da) * L(da) .

[’exponentielle

exp(da) = ¢9® = Z (d)™

est un exemple fondamental. Ses principales propriétés sont résumées dans la
proposition suivante.

PROPOSITION 3. L’exponentielle est une fonction continue de M dans
M\ My, vérifiant :

(i) e?*t90 = ¢4 5 4B pour do et dB dans M ;
(il) e = d\ < d\* L(da) = L(d)) et ¢*D = \(1).

") da)? =6
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PROPOSITION 4. Avec les notations du paragraphe 1, on a:
dN = M
on TI(x) := P(x) + 1P(x/%) + 1Py + ...

Cette proposition traduit I’identité eulérienne formelle :

1 1 1
Z_Jznl__l_:exp Z kﬁks'

n>1 " n>1 B3 n>1,k>1 n

Ainsi, la théorie de Beurling ressortit a 1’étude de 1’exponentielle et du
logarithme dans 1’algebre de mesures M.

FORMULAIRE

Nous donnons ci-dessous une liste de propriétés d’usage constant pour le
calcul dans M.

1. La multiplication par " est pour tout nombre complexe r un automor-
phisme de ['algébre M. En particulier, pour toute série entiere f(z),
on a

'f(da) = f(f'da) .
2. dax 4 = a(t)fit—t.

(log 7)" "
(n—1)!

d
4. (5+dt)*(6—7t):6.

* 1 dt
“"”:/1 (1“?>@'

3. LA METHODE DE L’HYPERBOLE REVISITEE

3. (d)*™ = dt.

5. §+dt = €%, ou

Si daxdB = dv, on a

10 = [ dots = [ (3)ao = [ (3 )ds0

= [(8()aacr+ [ a(%)aso - ara(%)

pour tout x et tout y tels que 1 <y <x.
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