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LA VERSION DE DIAMOND

DE LA MÉTHODE DE L'HYPERBOLE DE DIRICHLET

par Michel Balazard

L Nombres de Beurling

La démonstration, en 1896, du théorème des nombres premiers par
Hadamard et de la Vallée Poussin, conclut un siècle de recherches, menées

notamment par Gauss, Legendre, Dirichlet, Tchebycheff et Riemann. Une

énigme résolue, une autre apparut: quelle était la vraie nature de ce résultat

au carrefour de l'analyse et de l'arithmétique, du continu et du discret? Ces

questions presque philosophiques ont été examinées par trois des plus grands
mathématiciens du vingtième siècle. En 1949, Erdös et Selberg donnèrent

une démonstration élémentaire du théorème, élucidant ainsi une partie de sa

nature combinatoire. En 1937, Beurling créa la théorie des nombres premiers
généralisés.

Son idée fut d'envisager une étude "dynamique" du théorème des nombres

premiers. Considérons une suite croissante

ß : 1 < ßi < ß2 < lim ßn -boo
n—-(-oo

et formons tous les produits :

ß^ := ß?ß?...

où -V := (zq, v2,... désigne une suite arbitraire de nombres entiers naturels,
nuls à partir d'un certain rang. Rangeons ces produits dans l'ordre croissant:

1 a\ < a2 < lim an -boo
H— +OO
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Les ßn sont les nombres premiers généralisés et les an les nombres entiers

généralisés de Beurling. Le problème général est d'étudier les relations existant

entre les an et les ßn, ou plus précisément entre les fonctions de comptage :

Pix) := X] 1

ßn<X

et

"(*)••= £1 E '•
OLn <X ß v <X

Cette étude se divise en deux parties : le problème direct est la détermination
des propriétés de N(x) connaissant celles de P(x), et dans l'autre direction

on parle de problème inverse.

Le projet initial de Beurling est l'analyse de la stabilité du théorème des

nombres premiers. Posons donc

P(x) — li(x) + xrj(x),

N(x) Dx + xe(x),

où li est la fonction logarithme intégral et D une constante positive1). On a

les résultats suivants:

Théorème 1 (Beurling 1937, [5]). Si 7 > 3/2 et e(x) 0((logx)-7),
on a 77(E) o{\/ logx) (c'est-à-dire P(x) x/ log*;.

Ce théorème est optimal : l'énoncé devient faux si 7 |. D'autre part,
une conjecture de Bateman et Diamond (1969, cf. [4]) récemment confirmée

par Kahane donne la généralisation suivante du théorème 1 :

Théorème 2 (Kahane 1997, [11], [12]). Si

+°° dx
(£(x)\ogx)2— < Too,

X

alors P(x) ~ x/ logx.

Des hypothèses plus restrictives sur e(x) permettent naturellement de

donner des informations plus précises sur rj(x). On dispose ainsi des résultats

suivants :

1 On notera, par exemple dans le cas des nombres entiers usuels, que l'omission d'un nombre
fini de nombres premiers ne modifie pas le comportement asymptotique de P(x) mais change la
valeur de la limite de N(x)/x quand x tend vers l'infini. L'apparition d'une constante positive
D dans l'expression de N(x) est donc inévitable.
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Théorème 3 (Wegmann 1966, [17]). Si a > 3, a > 3b et e{x) —

0(\og~a x), alors rj(x) 0(log~b x).

THÉORÈME 4 (Hall 1972, [10]). Soient a, c et b tels que

0<a<l, c > 0, b< a/1.91.

Si e(x) 0(exp(-clogflx)) alors rj(x) 0(exp(-log*7*)).

Les théorèmes 1 à 4 concernent le problème inverse de Beurling: il s'agit

d'obtenir des conclusions sur les nombres premiers à partir d'hypothèses faites

sur les nombres entiers. Le problème direct est l'objet des résultats suivants2).

Théorème 5 (Diamond 1977, [8]). Si

alors N(x)/x tend vers une limite positive quand x tend vers Vinfini.

Théorème 6 (Diamond 1970, [7]). Soit a > 1. Si p{x) <9(log-ax),
alors e(x) 0(log3-ax).

THÉORÈME 7 (Diamond 1970, [7]). Soit a tel que 0 < a < l et b —
1 + a

Si tj(x) 0(exp(— loga y)), alors e(x) 0(exp(—(log x log log x)^)).

Il est intéressant de constater que les démonstrations des théorèmes 1, 2

et 4 utilisent l'analyse harmonique, alors que celles des théorèmes 3, 5, 6 et 7

sont essentiellement élémentaires. Le présent exposé a pour objet de rappeler,
sans démonstrations, le cadre conceptuel proposé par Diamond pour traiter
le problème direct de Beurling (paragraphe 2), d'isoler le principe technique
fondamental intervenant dans les démonstrations (paragraphe 3) et enfin de

présenter une application nouvelle (paragraphe 4).

2) Les travaux [18] et [1] donnent également des informations intéressantes sur ce problème.
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