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5.5. COROLLARY. Let E(r{) denote the projection of T£/}J onto the

K-isotypic subspace of type Ti, Then

(5-43) 0A9)=fmr,)TUg)].
di

is infinitesimally equivalent to a unitary representation if and

only if the corresponding irreducible subquotient of (jK'l s)k is unitarizable.
The following theorem is thus a consequence of Theorems 5.1 and 5.3 and

of Proposition 5.4.

5.6. THEOREM. is positive definite if and only if one of the

following cases occurs:

1. s — iv, v ^ R.

2. If 21 > In — 1 : its jy := 2(1 — n — j) + 1 /or integers j > 0 so //zotf

Sj > 0. (discrete series)

3. If 21 < 2n — 1 : s G (2/ — p + 2, — 2/ -f p — 2). (complementary series)

The situation for s real and nonnegative is represented in Figure 6.1.

6. The t/-Abel transform

Proposition 3.2 proves that the 77-Abel transform is a *-homomorphism
of T>(G;xi) int0 the convolution algebra D+(R) consisting of the even C°°
functions on R with compact support. The main theorem of this section states

that the 77-Abel transform is also a bijection of T)(G;xù onto D+(R), and

gives a formula for its inverse.

Identify A with R under the map 11—> at. Restriction to A then identifies

^iG'iXi) with D_j_(R). Let D([l,oo)) denote the set of the compactly
supported C°° functions on [l,oo) (right differentiability at 1 is considered).
Define a map H by

(Hf)(cosht) :=f(at) =f(t)
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Figure 6.1

Positive definite QyS for real 5 > 0

for / G V(G;xi)' Lemma 2 and its corollary in [Rou] imply

6.1. LEMMA. H is a bijection of D(G;xO onto D([l,oo)).

For every /x G C with üftp, > 0, the Weyl fractional integral transform of
(p G D([l, 00)) is defined by

00

(6.44) Wu</>(x) =7— / tp(u)(u - y)m_1 du, [1, oo).
HM) J

X

Analytic continuation of to ïfyx < 0 is obtained via repeated integration
by parts of (6.44) : for every integer m > 0

oo
(—\)m r dmuD

u) / —- dx.
Tip, + m) J dxm
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For every integer m > 0, the Gegenbauer transform (of dimension 4) of
(p G D([l,oo)) is defined by

oo

(6.45) Gm<p(u) f- [<p(x) Clm- u2)^xdx,m[1,oo),m+1 J Vx/
u

where

(6.46) C^(y) (m + l)F(-m,M + 2;

is the Gegenbauer polynomial of indices (l,m) (cf. e.g. [E + ], 3.15 (3)).

6.2. Lemma ([Kl], Theorem 3.2; [Dea], Formulas (28) and (29)).
1. For every /jl G C, L a bijection of D([l,oo)) onto itself The

inverse mapping of A W_M.
2. For every integer m > 0, Qm is a bijection of T)([l,oo)) onto itself

The inverse mapping of Qm is given by

oo

(6.47) g-U^) -2^+1)? /^<«>c» <*»

for all f G D([l, oo)) a// x G [1, oo).

6.3. THEOREM. The Ti-Abel transform is a bijection of D(G;x/) onto

D_|_(R). It can be written as the composition

(2<j
At ~2 H~l O oQ2loH,

dl

and its inverse is given by

Moreover, the support of the restriction to A R off G T)(G;xù ^ contained

in [—R,R] if and only if the support of Af is contained in [—R,R].

Proof Identify the set of pure quaternions w i b + j c -f- k d G H with
R3, and EL-1 with R4(n_0 If z G W~l, then —[z,z] |z|2 is the square
of the Euclidean norm of z in R4("~l). For at G A and n n{w,z) G A we
have

(atn)00 cosh t + e\w + \\z\2).

Let / G T)(G;x/). Applying Lemma 3.3 and Formulas (1.5), we obtain
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Jj'eP' J/(«f") dn
1

N

N

1
t [ [ (coshf+ e'(w+ \

d?£ J J *\\ cosht +e'(w + \\z\2)\J
R40.-1) R3

x Hf(\cosh

1/ [ [ci( cosht+je^\
iif J J 2'A[(cosh f + ^e'\z\2)2+ e2r\w\2p J

R4(m — 1 R3

x H/([(coshr+ \+ e2'\w\2]î) dzdw

(by Formula (4.40))

4"-' f f!/ cosh t_+ |X|2 \
df J J 2'V[(coshf+ |X|2)2+ \Y\2]iJ

R4(»-l) R3

x ///([(coshI + |X|2)2 + |F|2]ï)

(by substituting X ^e^z, Y éw)

CO CO

2P 7r2"-' f f! / cosh t + \
d2r(2rt — 2) J J 21\ [(cosh t + r2)+ ï /0 0

x ///([(cosh t+r2)2 +s2]ï) r4n~5s2 dsdr

(by passing to spherical coordinates in R4(" '' and in R3)
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df T(2n - 2)
cosh/

oo oo

/ h - }Hf([u2 +s2]ï)s2 ds
[u2 + S2]i

x (u — cosh t)2n~3 du

(by setting u cosh t + r2

(6.48)

22n 7r2n~1

^3r(2^z - 2)
cosh /

CM - )Hf(x)(x2 - u2)ïxdx (u — cosh t)2n 3

(by setting x — [u2 + s2] 2

i.e.

(27r)2(" -1)
(GuHf)(u) (" — cosh t)2n 3 du

d?Y(2n- 1)
cosh t

(27r)2(n~l)^2 W2„-2&////(coshr)
di

(27r)2(n-l)
(#-J w2„_2 g2; /f/)(o,

42

(27r)2^~^
Ai —^ C£T1 o W2„_2 o g2/ o ff).d2

The inversion formula immediately follows from Lemma 6.2.

The restriction to A R of / G T>(G;x/) has its support supp/
contained in [—/?,/?] if and only if supp///" c [l,cosh/?]. Moreover, if
supp<^ C [l,cosh/?], then suppW^, suppQm(p and supp Q~lip are also

contained in [ 1, cosh /?]. The last statement then follows from the formulas

for Ai and AT1,
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The n-spherical transform of / G D(G;xz) is the function// on C defined

by

G

Let Si : f I—» // denote the 77 -spherical transform, and let T denote the

Fourier-Laplace transform on R. Formulas (3.20) and (3.22) yield

Let TC^(R) denote the set of even functions h on C which are entire

rapidly decreasing functions of exponential type R : for every integer N > 0

there is a constant Cn > 0 so that

\Ks)\ < CN(1 + |5|)-weR|Ks| for all s C

Set TC+(R) := UR>0 3K^_(R). Theorem 6.3 and the Paley-Wiener Theorem for
the Fourier-Laplace transform of even functions on R prove the following
theorem.

6.4. THEOREM (Paley-Wiener Theorem). The t\ -spherical transform is a

bijection of D(G; \i) onto Jf+(R). Moreover, the restriction of f G T){G\xi)
to A R has support in [—7?,/?] if and only if j) G CK+(R).

We conclude this section by observing that the 77 -Abel transform is related,
as one should expect, to the Abel transform of [K2], §5.

Reversing the order of integration and substituting x coshr and
u coshw;, we obtain from (6.48)

(6.49) Si To Ai.

00

(6.50)

where

/
x (cosh w - cosh t)2n 3 sinh w dw

Substituting also y
cosh t — cosh w
coshr — cosh?

and setting

7(F t)
coshr — cosh?

2 cosh r
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we get from Formula (6.46)

A/(f, r) yft K\ sinh(2r)(cosh r — cosh t)2n~ 2 (cosh r)2
1

x J c\i0 - 27(?j r)y)y2(l - _y)2"~3(l - 7 dy

0

Vl(2l + 1)£) sinh(2T)(cosh t — cosh02n-^(coshr)2
1

X / +21,-21--y)2n~3(\
0

If we now apply the relation ([E+], 2.9(2))

(6.51) F(a,b;c;z) (1 — z)c~a~bF{c — a, c — b\c\z)

and Bateman's Formula ([E+], 2.4(2))

l

(6.52) F (a, b\ c\z) —- [ Xs'_1(1 - x)c~s~lF(a} b\ s\xz) dx
T(s)T(c -s) J

o

for îîc > > 0,z ^ 1, | arg(l — z)\ <7r,
we finally obtain

(6.53) Alitor) -L sinh(2r)(coshr — cosht)2n~^(coshr)«
2r(2^ — 2)

x F(IThe comparison of Formula (6.53) with the kernel r) in [K2],
Formula (5.60), gives

(6.54)

Al{t'T) 11? G)2" ^^'(co
2"4'C;(cosh r)-2' A2n-iyi+i(t,t)

where we have set

^
1 1 (7r\2n 1

(6'55) 1:=2(27+l)2 (4) r(2
'
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