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238 G. VAN DIJK AND A. PASQUALE

5.5. COROLLARY. Let E(t;) denote the projection of H;; onto the
K -isotypic subspace of type 1. Then

1
(5.43) Cs(g) = 4 tr[E(T)T1,5(9)] -

(T1s,H;s) is infinitesimally equivalent to a unitary representation if and
only if the corresponding irreducible subquotient of () )x is unitarizable.
The following theorem is thus a consequence of Theorems 5.1 and 5.3 and
of Proposition 5.4.

5.6. THEOREM. (;s; = (;_s is positive definite if and only if one of the
following cases occurs :

1. s=iv, vekR.
2. If2l>2n—1: £s=s:=2(l—n—j)+ 1 for integers j > 0 so that
s; > 0. (discrete series)

3. If20<2n—-1: s€eRl—p+2,-2l4+p—2). (complementary series)

The situation for s real and nonnegative is represented in Figure 6.1.

6. THE T7;,-ABEL TRANSFORM

Proposition 3.2 proves that the 7;-Abel transform is a *-homomorphism
of D(G; x;) into the convolution algebra D, (R) consisting of the even C
functions on R with compact support. The main theorem of this section states
that the 7;-Abel transform is also a bijection of D(G;x;) onto D, (R), and
gives a formula for its inverse.

Identify A with R under the map ¢ +— a,. Restriction to A then identifies
D(G; x) with Dy(R). Let D([1,00)) denote the set of the compactly
supported C*° functions on [1,00) (right differentiability at 1 is considered).
Define a map H by

(Hf)(cosh 1) := f(a;) = f(2)
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FIGURE 6.1

Positive definite (;; for real s > 0

for f € D(G;x;). Lemma 2 and its corollary in [Rou] imply
6.1. LEMMA. H is a bijection of D(G;x;) onto D([1,00)).

For every pu € C with Ry > 0, the Weyl fractional integral transform of
v € D([1,00)) is defined by

1 oo
(6.44) W, p(x) = —/ Wu—x)*"du, x €[1,00).
Analytic continuation of W, to Ry < 0 is obtained via repeated integration

by parts of (6.44): for every integer m > 0

W) = Fm | gen® G0
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For every integer m > 0, the Gegenbauer transform (of dimension 4) of
@ € D([1,00)) is defined by

649 Gupw = -0 [o0Cy (4)6F ~idbxax, welt o0,

where

L (y) — 31—y
(6.46) Ch ) = Gm + DF (=, m +2; 55—

is the Gegenbauer polynomial of indices (1,m) (cf. e.g. [ET], 3.15 (3)).

6.2. LEMMA ([K1], Theorem 3.2; [Dea], Formulas (28) and (29)).

1. For every p € C, W, is a bijection of D([1,00)) onto itself. The
inverse mapping of W, is W_,.

2. For every integer m > 0, G,, is a bijection of D([1,00)) onto itself.
The inverse mapping of G, is given by

(oo}

—1 _ 1 1 d1p 1 (YN, 2 24
(6.47) G Y(x) = —m; /ELF(M) C <;)(H —x°)2 du

X

for all ¢ € D([1,00)) and all x € [1,00).

6.3. THEOREM. The T1;-Abel transform is a bijection of D(G;x;) onto
D (R). It can be written as the composition

(271.)201 —1)

A= 72 H ' oWsy20GyoH,
!

and its inverse is given by
2
-1 _ d
(27)2n—1)

Moreover, the support of the restriction to A = R of f € D(G; x;) is contained
in [—R,R] if and only if the support of A)f is contained in [—R,R].

Al H 100Gy oWy 5, 0H.

Proof. Identify the set of pure quaternions w =ib+jc+kd € H with
R3, and H* ! with R**~ D If z € H*!, then —[z,z] = |z|* is the square
of the Euclidean norm of z in R*" V. For a, € A and n = n(w,z) € N we
have

(an),, = cosht + e'(w + 1|z)?).

Let f € D(G; x;). Applying Lemma 3.3 and Formulas (1.5), we obtain
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Aif () = ——ep’ /f(atn) dn

= e | xl( (e )Hf(i(afn)oob dn
N

dz I(al‘n)ool
L / cosht + e'(w + %lz\z) >
B d—ﬁe / X | cosh + ef(w + 3|z|?)]

x Hf (| cosht + €' (w + HzH))) dzdw

// ( cosh + 3¢l >
(cosh 1 S22 + w2}

R4(n D R3

x Hf ([(cosht + Le'|z|?)* + ¥ |w|?1?) dz dw

(by Formula (4.40))

4” L / / ( cosht + |X|? >
[(cosh + |X|2)? + |Y|?]2

Ré—1) R3

« Hf([(cosh t + [X|2)? + [Y*17) dX dY

(by substituting X = Le?z, ¥ = e'w)

p / / ( cosht+ r? >
T T -2 [(cosht + r2)? + $2]>

x Hf([(cosht + )2 + s2]2) F*" 552 ds dr

(by passing to spherical coordinates in R**~D and in R?)
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_ 2 / 7C HF([1? + s17) s% ds
E r(zn—z) 2 [uz+52%
0

cosht

X (u — cosh )*" 2 du

(by setting u = cosht + r?)

(6.48)
22nﬂ.2n l -

- H — 5 _ n—

4T (2n — 2) / sz< ) If(x) (x> — u?)2xdx [(u — cosh > 3du

cosht Lu
(by setting x = [u? + 52]2)

(2r)2n=D) /Oo -
- H . h n

2T(2n— 1) (G Hf )(w) (u — cosh )™~ du

cosht

2T 2(n—1)

= (——)dz—_ Wan—2 Gau Hf (cosht)
I

m*e=b

=T (H™ ' Whn_s Gy HF)(®),
I
1.e.
27 )20—1)
./4[ = '(L—z(H—l O WZn—Z o ng OH) .
I

The inversion formula immediately follows from Lemma 6.2.

The restriction to A = R of f € D(G;x;) has its support suppf
contained in [—R,R] if and only if suppHf C [1,coshR]. Moreover, if
supp C [1,coshR], then suppW,¢, suppGnp and suppG, ‘¢ are also
contained in [1,coshR]. The last statement then follows from the formulas

for A; and A1~1. ]
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The 7;-spherical transform of f € D(G; x;) is the function f, on C defined
by

Fis) = / f(@)Gsg)dg,  seC.
G

Let &§: f — ]?1 denote the 7;-spherical transform, and let F denote the
Fourier-Laplace transform on R. Formulas (3.20) and (3.22) yield

(6.49) Si=FoA.

Let in(R) denote the set of even functions # on C which are entire
rapidly decreasing functions of exponential type R : for every integer N > 0
there 1s a constant Cy > 0 so that

h(s)| < Cy(1 4 [s)~™NeR® for all s C.

Set Hi(R) := Uzpsg J{i (R). Theorem 6.3 and the Paley-Wiener Theorem for
the Fourier-Laplace transform of even functions on R prove the following
theorem.

6.4. THEOREM (Paley-Wiener Theorem). The 7;-spherical transform is a
bijection of D(G; x;) onto H(R). Moreover, the restriction of f € D(G; x))
to A =R has support in [—R,R] if and only if f, € fH:(R).

We conclude this section by observing that the 7;-Abel transform is related,
as one should expect, to the Abel transform of [K2], §5.

Reversing the order of integration and substituting x = cosh7 and
u = coshw, we obtain from (6.48)

oo

(6.50) Aif(t) = /A,(z‘, (1) dr
where
Qm>—t / cosh w 1
A — 1 2 . 2 g
(¢, T) d131“(2n 2 s1nh(27-)/C21<COShT>(cosh T — cosh” w)
t

X (coshw — cosh#)? 3 sinhw dw .

o cosh 7 — coshw .
Substituting also y = and setting

cosh 7™ — cosht

coshT — cosht 2n—1
A7) = and K= T
2cosht dPT(2n — 2)
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we get from Formula (6.46)

Al(t, ) = V2 K; sinh(27)(cosh 7 — cosh t)2”~ 2 (cosh 7')%
]

< / C (1 = 2y(t, Pyt (1 — 3?31 — 4, W) dy
0

= V221 + 1K; sinh(27)(cosh T — cosh £)¥*~ 2 (cosh 7)?
1

3 1 3 1 1
F<_ 2 __2 T a T 5 . 27’1—3 _ '2‘ .
x/ S 2L -2 2 2,7(t,7)y)y (1 =) — (¢, 7)y)2dy
0

If we now apply the relation ([E*], 2.9(2))
(6.51) F(a,b;c;2) = (1 —2)° “°F(c—a,c—b;c;2)
and Bateman’s Formula ([ET], 2.4(2))

1
I'(c) / —1 ——
6.52 F(a,b,c;z) = —x)° , b s;
(6.52) (a,b;c;2) TG — o) X7 (1 —x) F(a,b;s;xz) dx
0
for Re > RNs > 0,z # 1, |arg(l — 2)| <,

we finally obtain

oM ] 1
653) Al = =D 1 Gih@r) (coshr — cosh 3 (cosh )}

2T(2n — 3) d?

3 1 1
F{=-+2,-2]—=2n— = .
X <2+ s [ 2’ n 277(t77—)>

The comparison of Formula (6.53) with the kernel Aj,_; 241(¢,7) 1n [K2],
Formula (5.60), gives

(6.54)

At )_1 ! (W>2n ! 2% (cosh )™ A (¢, 7)
= —— (- e T n— 5 F
iz, T 2d12 1 T2n) 2n—1,21+1

= 27 C)(cosh 7)™ Agy_1.0141(8,7)

where we have set

1 1 m\2n 1
(6.52) C "—‘am(z) ran
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