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4.4. COROLLARY. The Tj-spherical functions are exactly the functions
{¢s : s € C} given by Formulas (3.24) and (4.39). Further, (., satisfies
Cs(g) = Q,S(g“l) for all g € G. Moreover, ;s = (¢ if and only if s = +s'.

The functional equation (3.15) with ¢g; = a; and g, = a, becomes (cf.
[T2], Théoreme 1, p.227)

(4.41) Cr,s(DC,s(T) = / Ki(t, 7, u)Gr,s(W)Au) du
0

where A is as in (1.7) and the kernel K(z,7,u) is defined as follows. Set

cosh? ¢ + cosh? 7 +cosh?u — 1

2 coshzcosh 7 cosh u
Then

272PT'(2n) (coshtcosh T cosh u)?" 3

3
. . . (1-B*"~2
1 n—
v/7I'(2n — 3) (sinhtsinh 7 sinh u)*~2

4.42) Kit,7,u) =

11
« F(2n+21,2n~21—2;2n— 5150 —B))

if B <1, and Ki(t,7,u) := 0 if B > 1. Using (4.39) and Formula (7.11)
in [K2], one can prove that (4.41) holds also outside our group-theoretical
setting for all / € R satisfying 2n—1 > 21 > 0.

5. 'THE POSITIVE DEFINITE 7;-SPHERICAL FUNCTIONS

A continuous function ¢ on a locally compact group G is said to be
positive definite if for every f € C.(G)

/ / YT dedy > 0.
G G

In this section we establish which among the (;; are positive definite.

Let us first introduce some notation and recall some definitions. Let G be
a semisimple Lie group with finite center, and let K be a maximal compact
subgroup of G. g and £ (C g) are the Lie algebras of G and K, respectively.
A (strongly continuous) representation 7 of G on a Banach space H is
denoted by (7T,H). We may simply speak of the representation 7T if H is
understood. Irreducibility for 7 always means topological irreducibility (= no
closed proper invariant subspaces). Let K denote the set of equivalence classes
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of finite dimensional irreducible representations of K. We say that 7 € K
occurs in Tl if there exists a finite dimensional T'|k-invariant subspace V
of H so that (T|x,V) € 7. The linear span of all these subspaces V 1s the
K -isotypic subspace of H of type 7, denoted H(r). If d, is the dimension
of 7 and x. is its character, then

Er(m) = d, / TGk xr () dk

K

is a continuous projection of H onto H(7). We set Hgx = > . H(7). T is
said to be K -finite if dimH(r) < oo for all 7 € K. A Hilbert representation
(T,H) is said to be admissible if it is K-finite and if T|x acts on JH by
unitary operators.

A representation U of an (associative or Lie) algebra A on a C-vector
space E is denoted (U,E). The term A-module is also used. Irreducibility
for U always means algebraic irreducibility (= no proper invariant subspaces).
Let EC denote the set of equivalence classes of finite dimensional simple f¢c-
modules. The sum of all simple ¥c-submodules of E which are in the class
6 € tc is denoted by E(§). (U,E) is said t-finite if dimE(8) < co for all
§ ctc and if E = Z E(6)

Every K-finite 1rreduc1ble representation (7', H) of G induces a E-finite
irreducible representation (Tx,Hg) of L(g) by differentiation. If, moreover,
H 1s Hilbert and T is unitary, then g acts on Hg by skew-adjoint operators :
(Tx(X)p, ) = — (@, Txk(X)p) for all X € g and all ¢, € Hg. Two K -finite
representations (T, H), (T',H’) of G are said to be infinitesimally equivalent
if the representations (Tx,Hg), (Tx, Hy) of U(g) are equivalent.

Assume G is simply connected (which is the case for G = Sp(1,n)). It is
a result of Harish-Chandra ([HC1], Theorem 9; see also [W1], pp.330-331)
that if (U,S) is an algebraically irreducible ¢-finite representation of £i(g)
and if S can be endowed with a positive definite Hermitian form (.,-) for
which g acts on (S, (-,-)) via skew-adjoint operators, then there is a unique
unitary irreducible representation 7 of G on the Hilbert completion H of
S with respect to (-,-) so that fHK S and Tx = U. We say 1in this
case that (U,S) — or simply S if U is understood — is wunitarizable. If, in
particular, (U, S) = (TK,J{K) for a K-finite irreducible representation (7, H)
of G, then (7,H) and (T J-C) are infinitesimally equivalent. The converse is
also obvious: if (7, H) is an irreducible K -finite representation of G which

is infinitesimally equivalent to a unitary Hilbert representation (T, 3{) of G,
then (Tx,Hg) is unitarizable.
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As we are going to show, the 7;-spherical functions can be written as

1 1
G,s(9) = 4 tr[E(T)T1,s(9)E(T)] = 2 tr[E(T)T1,5(9)]

for certain admissible irreducible Hilbert representations (775, H;;) of G =
Sp(1,n) satisfying dim H, ;(1;) = d; (for the second equality see e.g. [HC2],
Lemma 1). The positive definite (;; can then be selected by applying the
following theorem.

5.1. THEOREM ([Sak], Theorem 3; [B], 14.8, p.44). (s is positive
definite if and only if (T)s,H;s) is infinitesimally equivalent to a unitary
representation.

Realize 7; as a unitary representation on a (2/ + 1)-dimensional Hilbert
space V; with inner product (-,-),. For all s € C, define a representation 6, ,
of P =MAN on V; by

0) s(man) = e TP (m)

Consider the representation Tl/,s = Indﬁ(@,)s) of G = Sp(1,n): the represen-
tation space is the Hilbert completion J}; of the set of the C*° functions
F: G — V,; satistying

F(gp) = 0,s(p"HF(g) = * P'r(m~HF(g9), g€ G, p=mancP,

with respect to the inner product

(Fy, F)i = / (F\(0), Fa()), dk.
K
G acts according to

(T (DF)g)=Fg'g), 9,9 €G.

T], is admissible, but need not be irreducible.
The following lemma is a straightforward generalization of the result in
Section 16, pp.526-528, of [Go]. We therefore omit its proof.

52. LEMMA. Forall 1€ N/2 and s € C, let E'(1]) denote the projection
of H,s onto its K-isotypic subspace of type 1;. Then

1
Gs9) = 5 UTE' T/ (9).
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The composition series structure and unitarity for the T, have been
determined by Howe and Tan with infinitesimal methods. In [HT], the results
about the 7, are deduced from those obtained for a certain family of
representations of Sp(l.n) x H* which are equivalent to T/, ® 75. Here
H* = RY - Sp(1) denotes the group of quaternionic dilations, acting on the
space V; of 7 according to

1.5(h) = |h[P7 (h/|h]) . he H”.

5.3. THEOREM ([HT], Theorem 5.6 and p. 58).

1. (K] )k is equivalent as a \(g)-module to (H] _Jk.

2. (H) )k is a reducible U(g)-module if and only if s € Z, s = 2(I—-n)+1
(mod 2) and s ¢ Rl —p+2. =21+ p—2).

3. Suppose (H] )k irreducible. Then (H; )k is unitarizable if and only if
one of the following nvo cases occurs.:
(a) s =iv, v e R.
(b) se QL—p+2. =20+ p—2).
Case (b) corresponds to the complementary series for Sp(l.n). They exist if
and onlyv if 21 < 2n —1.

The fact that 7; occurs exactly once in 7] |g¢ for the irreducible 77 is
known a priori ([Go], Corollary to Theorem 8, p.522; [Dei], Theorem 3). The
explicit K-module decomposition of (H; )k in [HT], pp.53-54, shows that
this is actually true for all the 77, . The K -submodule of (H) )k equivalent
to 7; is the only element in the “fiber of K-types” over the point (0, 20)
in Diagrams 5.10 and 5.14 of [HT]. It is contained in a unique subquotient
of T;.. which can then be located in the diagrams used to determine the
unitarizability of the various subquotients ([HT], pp.25 and 30). We therefore
obtain the following proposition.

5.4. PROPOSITION. Suppose (H] )x is a reducible A(g)-module and
assume s > 0. The irreducible subguotient of (H) )k in which 7 occurs is
unitarizable if and only if s = 2(I—n)+1 (mod 2) and 21 > s—p+4n—2. That
is, if and only if 21 > 2n—1 and s € {s; = 2(l-n—j)+1: j=0,1,...;5 > 0}.

Let (T}5.H) denote the subquotient representation of 7} corresponding
to the irreducible subquotient of (H; )x in which 7; occurs. Then T;; is an

admissible Hilbert representation of Sp(l.n), and T, (g)v = T, (g)v for all
v € H; (7). Lemma 5.2 yields
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5.5. COROLLARY. Let E(t;) denote the projection of H;; onto the
K -isotypic subspace of type 1. Then

1
(5.43) Cs(g) = 4 tr[E(T)T1,5(9)] -

(T1s,H;s) is infinitesimally equivalent to a unitary representation if and
only if the corresponding irreducible subquotient of () )x is unitarizable.
The following theorem is thus a consequence of Theorems 5.1 and 5.3 and
of Proposition 5.4.

5.6. THEOREM. (;s; = (;_s is positive definite if and only if one of the
following cases occurs :

1. s=iv, vekR.
2. If2l>2n—1: £s=s:=2(l—n—j)+ 1 for integers j > 0 so that
s; > 0. (discrete series)

3. If20<2n—-1: s€eRl—p+2,-2l4+p—2). (complementary series)

The situation for s real and nonnegative is represented in Figure 6.1.

6. THE T7;,-ABEL TRANSFORM

Proposition 3.2 proves that the 7;-Abel transform is a *-homomorphism
of D(G; x;) into the convolution algebra D, (R) consisting of the even C
functions on R with compact support. The main theorem of this section states
that the 7;-Abel transform is also a bijection of D(G;x;) onto D, (R), and
gives a formula for its inverse.

Identify A with R under the map ¢ +— a,. Restriction to A then identifies
D(G; x) with Dy(R). Let D([1,00)) denote the set of the compactly
supported C*° functions on [1,00) (right differentiability at 1 is considered).
Define a map H by

(Hf)(cosh 1) := f(a;) = f(2)
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