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4.4. COROLLARY. The ri -spherical functions are exactly the functions
{0,5 • s G C} given by Formulas (3.24) and (4.39). Further, 0,5 satisfies

0,s(g) Q,s(g~l) for all g G G. Moreover, 0,5 Ci,s' if and only if s ±s'.

The functional equation (3.15) with g\ at and g2 — aT becomes (cf.
[T2], Théorème 1, p. 227)

poo
(4.41) Ci,s(f)Ci,s(r) / Ki(t, r, u)CijS(u)A(u) du

J o

where À is as in (1.7) and the kernel Kft.r.u) is defined as follows. Set

cosh2 t + cosh2 r + cosh2 u — 1

B —
2 cosh t cosh r cosh u

Then

(4.42) W,r,u):=
(cosh'crahTCOsh..)*-'

ï/7rr(2?2 — I (sinh t sinh r sinh u)4n~2

x F+ 2n2; 2« — 17(1 _ ß))

if 5 < 1, and Ki(t,t,u) :=0 if B>1. Using (4.39) and Formula (7.11)
in [K2], one can prove that (4.41) holds also outside our group-theoretical
setting for all / G R satisfying In — 1 > 21 > 0.

5. The positive definite tx -spherical functions

A continuous function on a locally compact group G is said to be

positive definite if for every / G Cc(G)

J J C(x~0.

G G

In this section we establish which among the Q,s are positive definite.

Let us first introduce some notation and recall some definitions. Let G be

a semisimple Lie group with finite center, and let K be a maximal compact
subgroup of G. $ and (C g) are the Lie algebras of G and K, respectively.
A (strongly continuous) representation T of G on a Banach space TC is

denoted by (T, T0. We may simply speak of the representation T if TC is

understood. Irreducibility for T always means topological irreducibility no
closed proper invariant subspaces). Let K denote the set of equivalence classes
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of finite dimensional irreducible representations of K. We say that r G K
occurs in T\k if there exists a finite dimensional T |j^ -invariant subspace V

of K so that (T\k, V) G r. The linear span of all these subspaces V is the

K -isotypic subspace of IK of type r, denoted IK(r). If dT is the dimension

of r and Xr is its character, then

is a continuous projection of IK onto IK(r). We set 3~Ck J2TeK ^(r)- ^ is

said to be K-finite if dim K(r) <00 for all r E K. A Hilbert representation

(J, IK) is said to be admissible if it is A-finite and if T\% acts on IK by

unitary operators.

A representation U of an (associative or Lie) algebra A on a C-vector

space E is denoted (U,E). The term A-module is also used. Irreducibility
for U always means algebraic irreducibility no proper invariant subspaces).

Let £q denote the set of equivalence classes of finite dimensional simple
démodulés. The sum of all simple de -submodules of E which are in the class
6 G de is denoted by E(6). (U,E) is said d-finite if dim£(<5) < 00 for all

Every K-finite irreducible representation (T, IK) of G induces a d-finite
irreducible representation (7V.K/A of ii(g) by differentiation. If, moreover,
IK is Hilbert and T is unitary, then 0 acts on K^ by skew-adjoint operators :

(TK(X)ip,iJj) — ((£, TK(X)ip) for all A G g and all G WK. Two A-finite
representations (T,IK), of G are said to be infinitesimally equivalent
if the representations (Tk,Kk), (T'k^'k) of *%) are equivalent.

Assume G is simply connected (which is the case for G Sp(l,«)). It is
a result of Harish-Chandra ([HCl], Theorem 9; see also [Wl], pp. 330-331)
that if (£/, S) is an algebraically irreducible d-finite representation of it(g)
and if S can be endowed with a positive definite Hermitian form (•, •) for
which g acts on (5, (•,•}) via skew-adjoint operators, then there is a unique
unitary irreducible representation f of G on the Hilbert completion IK of
S with respect to (•, •) so that 0iK S and TK U. We say in this
case that (U,S) - or simply S if U is understood - is unitarizable. If, in
particular, (U,S) (r^,K^)^ for a A-finite irreducible representation (T, K)
of G, then (T, K) and (T, K) are infinitesimally equivalent. The converse is
also obvious: if (T,K) is an irreducible A-finite representation of G which
is infinitesimally equivalent to a unitary Hilbert representation (f,K) of G,
then (Tk,Mk) is unitarizable.

K

<5Gdc and if E J2ôeîcE(6)
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As we are going to show, the 77 -spherical functions can be written as

< iM4 tr [E(TÙTitS(g)E(ri)]Lr
di di

for certain admissible irreducible Hilbert representations (7/^,3-C/^) of G

Sp(l,n) satisfying dimCK/jiS(t/) di (for the second equality see e.g. [HC2],
Lemma 1). The positive definite ("/> can then be selected by applying the

following theorem.

5.1. Theorem ([Sak], Theorem 3; [B], 1.4.8, p. 44). QyS is positive
definite if and only if (7/^, TC^S) is infinitesimally equivalent to a unitary
representation.

Realize 77 as a unitary representation on a (2/-f 1)-dimensional Hilbert

space Vi with inner product (•,•)/• F°r all s G C, define a representation 6^s

of P MAN on Vi by

6^s(matn) e~^~p^ri(m).

Consider the representation T'ls — Indof G Sp(l,«) : the representation

space is the Hilbert completion tK\ s of the set of the C°° functions
F : G —> V/ satisfying

-F(ffP) 8i,s(p~l)F(g) e{s~p),Ti(nTl)F(g), g e G, p matn G P,

with respect to the inner product

(FuF2)i= [ (Fl(kfF2(k))ldk.
Jk

G acts according to

{T'Us(g)F)(g')F(g-lg'),g,g'&G.

T[s is admissible, but need not be irreducible.

The following lemma is a straightforward generalization of the result in
Section 16, pp. 526-528, of [Go]. We therefore omit its proof.

5.2. LEMMA. For all l G N/2 and s G C, let denote the projection
of *Kij onto its K-isotypic subspace of type 77. Then

0M T tr[iAT/)r;')f(<7)].
di
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The composition series structure and unitarity for the Tjs have been

determined by Howe and Tan with infinitesimal methods. In [HT], the results

about the Tj s are deduced from those obtained for a certain family of

representations of Sp(l.n) x Hx which are equivalent to T'ls ®t^s. Here

Hx Rx Sp(l) denotes the group of quaternionic dilations, acting on the

space Vj of 77 according to

T/.VO I h\s~pT,(h/\h\).h Hx

5.3. Theorem ([HT], Theorem 5.6 and p. 58).

1. is equivalent as a U(g) -module to (fK\__s)k-

2. (JtJ s)k is a reducible il(f)-module if and only if s e Z, s 2(1 —n) + 1

(mod 2) and s £ (2/ — p -f 2. —21 + p — 2).

3. Suppose ÇKÏJx irreducible. Then (fi'l s)K is unitarizable if and only if
one of the following two cases occurs :

(a) s ii/f y G R.

(b) s G (21- p+ 2.-21 + p-2).
Case (b) corresponds to the complementaiy series for Sp(l, n). They exist if
and only if 21 < 2n — 1.

The fact that 77 occurs exactly once in T'ls\K for the irreducible T'ls is

known a priori ([Go], Corollary to Theorem 8, p. 522; [Dei], Theorem 3). The

explicit i^-module decomposition of (fit/ s.)^ in [HT], pp. 53-54, shows that

this is actually true for all the Tjs. The K-submodule of (JfS)K equivalent
to T} is the only element in the "fiber of -types" over the point (0,2/)
in Diagrams 5.10 and 5.14 of [HT]. It is contained in a unique subquotient
of T\s. which can then be located in the diagrams used to determine the

unitarizability of the various subquotients ([HT], pp.25 and 30). We therefore
obtain the following proposition.

5.4. PROPOSITION. Suppose (fif/7s)k is a reducible U($)-module and
assume s > 0. The irreducible subquotient of in which ri occurs is

unitarizable ifand only if s 2(l-n)+1 (mod 2) and 21 > s—p+An—2. That
is, ifand only if 21 > 2/z-l and s G {sj 2(l—n—j)+l : j 0, 1,... ; sj > 0}.

Let (7).5.fi{/..v) denote the subquotient representation of T\s corresponding
to the irreducible subquotient of (TCiJk in which 77 occurs. Then TLs is an
admissible Hilbert representation of Sp(l./z), and TLs(g)v T\s(g)v for all
v G yi'i s(ri). Lemma 5.2 yields
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5.5. COROLLARY. Let E(r{) denote the projection of T£/}J onto the

K-isotypic subspace of type Ti, Then

(5-43) 0A9)=fmr,)TUg)].
di

is infinitesimally equivalent to a unitary representation if and

only if the corresponding irreducible subquotient of (jK'l s)k is unitarizable.
The following theorem is thus a consequence of Theorems 5.1 and 5.3 and

of Proposition 5.4.

5.6. THEOREM. is positive definite if and only if one of the

following cases occurs:

1. s — iv, v ^ R.

2. If 21 > In — 1 : its jy := 2(1 — n — j) + 1 /or integers j > 0 so //zotf

Sj > 0. (discrete series)

3. If 21 < 2n — 1 : s G (2/ — p + 2, — 2/ -f p — 2). (complementary series)

The situation for s real and nonnegative is represented in Figure 6.1.

6. The t/-Abel transform

Proposition 3.2 proves that the 77-Abel transform is a *-homomorphism
of T>(G;xi) int0 the convolution algebra D+(R) consisting of the even C°°
functions on R with compact support. The main theorem of this section states

that the 77-Abel transform is also a bijection of T)(G;xù onto D+(R), and

gives a formula for its inverse.

Identify A with R under the map 11—> at. Restriction to A then identifies

^iG'iXi) with D_j_(R). Let D([l,oo)) denote the set of the compactly
supported C°° functions on [l,oo) (right differentiability at 1 is considered).
Define a map H by

(Hf)(cosht) :=f(at) =f(t)
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